TY - JOUR A1 - Erwamati, F. U. A1 - Pratapa, S. A1 - Suasmoro, S. A1 - Hübert, Thomas A1 - Banach, Ulrich T1 - Preparation and structural study of Mg1−xZnxTiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz JF - Journal of Materials Science: Materials in Electronics N2 - A series of Mg₁₋ₓZnₓTiO₃, x = 0–0.5 (MZT0–MZT0.5) ceramics was synthesised and characterised. The dielectric properties of the samples in the frequency range of 1 Hz – 7.7 GHz were explored using three different methods: a contacting electrode method, a parallel-plate method and a perturbed resonator method. The electrical properties in the space charge and dipolar polarisation frequency ranges are discussed in relation to the phase composition and microstructure data. Differences in the zinc Substitution divided the dielectrics into two groups, namely MZT0-MZT0.2 and MZT0.3–MZT0.5, each with different amount of a main Mg₁₋ₓZnₓTiO₃ solid solution phase and a secondary solid solution phase. Zinc substitution promoted the density of the ceramics, improved the purity of the main phase and increased the permittivity for frequencies up to 10⁸ Hz, but reduced the permittivity in the microwave range. In the MZT0.3–MZT0.5 samples, for frequencies less than 1 MHz the quality (Q x ƒ) factors were lower and log σ ₐ.c, the AC conductivity, was higher than for the MZT0–MZT0.2 samples. Above 10 MHz, the (Q x ƒ) factors and log σ ₐ.c of the two groups were similar. KW - Mg1-xZnxTiO3 KW - Space charge polarisation KW - Dipole polarisation KW - Microwave frequency KW - Dielectric properties PY - 2016 DO - https://doi.org/10.1007/s10854-016-4610-6 SN - 0957-4522 VL - 27 IS - 7 SP - 6637 EP - 6645 PB - Springer CY - Dordrecht, Netherlands AN - OPUS4-36466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermawati, F. U. A1 - Supardi, Z. A. I. A1 - Suasmoro, S. A1 - Hübert, Thomas T1 - Contribution of Relaxation Effect to the Permittivity of Mg1-xZnxTiO3 Ceramics JF - IOP Conference Series: Materials Science and Engineering N2 - This work reported the investigation on the effect of relaxation to the permittivity (epsilon' r ) characteristic of Mg1-x Zn x TiO3 ceramics for x = 0 – 0.5 (MZT0 – MZT0.5) measured from 1 Hz to 330 MHz. Within that frequency range, the relaxation effect that consists of the space charge (SC) and the dipolar (D) polarization mechanisms were identified. The contribution of the D relaxation in MZT0 – MZT0.2 systems extents overall from about 100 Hz to 330 MHz, while that in MZT0.3 – MZT0.5 systems is from 50 kHz to 330 MHz. The remaining frequencies, i.e. from 1 to 90 Hz for MZT0 – MZT0.2 and from 1 Hz to 50 kHz for MZT0.3 – MZT0.5, are attributed to the SC relaxation. The D polarization mechanism provides constant epsilon' r values which vary from (15.4 – 17.0) ± 0.3 throughout the samples. Contribution of the SC polarization mechanism to the characteristic is supported by the simultaneous presence of different content and level of resistivity of the secondary phase of (Mg1-αZnα)2TiO4 in MZT0 – MZT0.2 systems and of (Zn1-αMgα)2TiO4 in MZT0.3 – MZT0.5, along with the presence of the main Mg1-x Zn x TiO3 phase, as a result of the variation of zinc content in the systems. T2 - The 5th International Conference on Advanced Materials Sciences and Technology (ICAMST 2017) CY - Makassar, Indonesia DA - 19.09.2017 KW - Dielectric ceramic KW - dipolar polarization KW - Mg1-xZnxTiO3 KW - permittivity KW - space charge polarization PY - 2018 DO - https://doi.org/10.1088/1757-899X/367/1/012003 SN - 1757-8981 VL - 367 SP - 1 EP - 6 PB - IOP Publishing Ltd AN - OPUS4-45618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -