TY - JOUR A1 - Polami, S.M. A1 - Reinhardt, R. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Joint-site structure friction welding method as a tool for drive pinion light weighting in heavy-duty trucks JF - Journal of materials processing technology N2 - To satisfy the applied compressive stresses of friction welded drive pinion fabricated by using the joint-site structure (JSS) method, three different variants were followed: (A) the initial design with two joints was carried out. Two different burn-off lengths were examined for this variant. (B) The optimum burn-off length was considered for only one weld zone. (C) The weld zone was moved radially from the initial location and two different gap sizes were compared. The smallest gap size for the third variant led to the largest weld length. The lack of structural welding defects for this variant was assessed by ultrasonic testing. Hardness of the material after friction welding (FW) was correlated to the Continuous Cooling Transformation (CCT) diagram of the used materials and revealed the phase/microstructure transformation of the material. The simulated applied stresses on the optimized friction welded design of the drive pinion showed suitable results. The new drive pinion friction welded by the JSS method reduced the weight of the component by approx. 14%. KW - Friction welding KW - Joint-site structure KW - Drive pinion KW - Lightweight design PY - 2014 DO - https://doi.org/10.1016/j.jmatprotec.2014.03.027 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 9 SP - 1921 EP - 1927 PB - Elsevier CY - Amsterdam AN - OPUS4-30718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -