TY - JOUR A1 - Schmidt, Benita A1 - Pergantis, S. A. A1 - Esteban-Fernández, Diego A1 - Jakubowski, Norbert A1 - Günther, D. T1 - Investigation of a combined microdroplet generator and pneumatic nebulization system for rapid quantitative determination of metal-containing nanoparticles using ICP-MS JF - Analytical chemistry N2 - In this work, a routinely applicable approach is presented to characterize metal NPs. Individual droplets generated from a microdroplet generator (MDG) were merged into an aerosol generated by a pneumatic nebulizer (PN) and introduced into an ICPMS. The MDG offers high transport efficiency of individual and discrete droplets and was therefore used to establish a calibration function for mass quantification of NPs which were introduced through the PN following the single particle procedure as described elsewhere. The major advantages of such a combined configuration include fast processing of large sample volumes, fast exchanges of different sample matrixes, and the calibration of the NP signal using traceable elemental standards, thus avoiding the need to use NP reference materials or other, not always thoroughly characterized, commercially available NPs. The transport efficiency of the sample introduction is calculated based on the fact that 100% of the calibrant reaches the plasma through the MDG, whereas for the PN a NP suspension containing a known number concentration is used. Alternatively, bulk analysis of the NP material allows transport efficiency determination without any additional information from reference NPs. With this method, we could determine the size of standard silver NPs at 60.4 ± 1.0 nm and 80.0 ± 1.4 nm, respectively, which agrees with the size ranges given by the supplier (60.8 ± 6.6 nm and 79.8 ± 5.4 nm). Furthermore, we were also able to determine the NPs number concentration of the sample (Ag/Au) with a deviation of 3.2% the expected value. KW - Nanoparticles KW - ICP-MS KW - Microdroplet generator PY - 2015 DO - https://doi.org/10.1021/acs.analchem.5b01604 SN - 0003-2700 SN - 1520-6882 VL - 87 IS - 17 SP - 8687 EP - 8694 PB - American Chemical Society CY - Washington, DC AN - OPUS4-34803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Schmidt, B. A1 - Sötebier, C. A1 - Pergantis, S. A1 - Shigeta, K. T1 - Single particle and single cell ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Single particle ICP-MS KW - Single cell ICP-MS PY - 2017 AN - OPUS4-40952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry JF - Jove - Journal of visualized experiments N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chronakis, Michail Ioannis A1 - Mavrakis, E. A1 - Alvarez-Fernandez García, R. A1 - Montes-Bayon, M. A1 - Bettmer, J. A1 - Pitta, P. A1 - Tsapakis, M. A1 - Kalantzi, I. A1 - Tsiola, A. A1 - Pergantis, S. An. T1 - Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma – mass spectrometry JF - Chemosphere N2 - Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma – Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L− 1 per day, for 10 consecutive days, up to a total of 500 ng Ag L− 1 ), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 μs) and specialized data treatment, information was obtained on the nanoparticles’ size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS. KW - Mesocosm KW - Single-particle KW - Seawater PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2023.139109 VL - 336 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, Daniel A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, Ph. A1 - Tentschert, J. A1 - Jakubowski, Norbert A1 - Laux, P. A1 - Panne, Ulrich T1 - Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer / microdroplet generator sample introduction system for multi-mode nanoparticle determination JF - Analytica Chimica Acta N2 - This study reports on the development of a single-particle (sp) inductively coupled plasma mass spectrometry (ICP-MS) technique suitable for the multi-mode determination of nanoparticle (NP) metal mass fraction and number concentration. The described technique, which is based on a dual inlet System consisting of a pneumatic nebulizer (PN) and a microdroplet generator (MDG), allows for the sequential introduction of ionic metal calibrant solutions and nanoparticle suspensions via all combinations of the two inlets; thus allowing for a combination of three independent modes of analysis. A novel interface, assembled using standard analytical components (a demountable quartz ICP-MS torch, flexible nonconducting silicon tubing and various connectors), was used to interface the dual inlet system to an ICP-MS. The interface provided improved functionality, compared to a previous design. It is now possible to conveniently exchange and introduce standard solutions and samples via all inlet combinations, analyze them, and also wash the sample inlet systems while the whole setup is still connected to an operating ICP-MS. This setup provided seamless and robust operation in a total of three analysis modes, i.e. three ways to independently determine the metal mass fraction and NP number concentration. All three analyses modes could be carried out within a single analytical run lasting approximately 20 min. The unique feature of the described approach is that each analysis mode is based on a different. KW - Nanomaterials KW - Nanoparticles KW - Single particle ICP-MS KW - Microdroplet generator PY - 2020 DO - https://doi.org/10.1016/j.aca.2019.11.043 VL - 1099 SP - 16 EP - 25 PB - Elsevier B.V. AN - OPUS4-50361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -