TY - JOUR A1 - Hübner, S. A1 - Kressirer, S. A1 - Kralisch, D. A1 - Bludszuweit-Philipp, C. A1 - Lukow, K. A1 - Jänich, I. A1 - Schilling, A. A1 - Hieronymus, Hartmut A1 - Liebner, Christian A1 - Jähnisch, K. T1 - Ultrasound and microstructures - a promising combination? JF - ChemSusChem N2 - Short diffusion paths and high specific interfacial areas in microstructured devices can increase mass transfer rates and thus accelerate multiphase reactions. This effect can be intensified by the application of ultrasound. Herein, we report on the design and testing of a novel versatile setup for a continuous ultrasound-supported multiphase process in microstructured devices on a preparative scale. The ultrasonic energy is introduced indirectly into the microstructured device through pressurized water as transfer medium. First, we monitored the influence of ultrasound on the slug flow of a liquid/liquid two-phase system in a channel with a high-speed camera. To quantify the influence of ultrasound, the hydrolysis of p-nitrophenyl acetate was utilized as a model reaction. Microstructured devices with varying channel diameter, shape, and material were applied with and without ultrasonication at flow rates in the mL min-1 range. The continuous procedures were then compared and evaluated by performing a simplified life cycle assessment. KW - Biphasic reactions KW - Hydrolysis KW - Interfaces KW - Liquids KW - Ultrasound PY - 2012 DO - https://doi.org/10.1002/cssc.201100369 SN - 1864-5631 SN - 1864-564X VL - 5 IS - 2 SP - 279 EP - 288 PB - Wiley-VCH CY - Weinheim AN - OPUS4-25476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - MacLean, J. A1 - Mayanna, S. A1 - Benning, L. G. A1 - Horn, F. A1 - Bartholomäus, A. A1 - Wiesner, Yosri A1 - Wagner, D. A1 - Liebner, S. T1 - The terrestrial plastisphere: Diversity and polymer-colonizing potential of plastic-associated microbial communities in soil JF - Microorganisms N2 - The concept of a ‘plastisphere microbial community’ arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a ‘terrestrial plastisphere’ as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds. KW - Soil microbial community KW - Polyethylene colonization KW - Plastic pollution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542790 DO - https://doi.org/10.3390/microorganisms9091876 VL - 9 IS - 9 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roduner, E. A1 - Kaim, W. A1 - Sarkar, B. A1 - Urlacher, V.B. A1 - Pleiss, J. A1 - Gläser, R. A1 - Einicke, W.-D. A1 - Sprenger, G.A. A1 - Beifuß, U. A1 - Klemm, E. A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Hsu, S.-F. A1 - Plietker, B. A1 - Laschat, s. T1 - Selective catalytic oxidation of C-H bonds with molecular oxygen JF - ChemCatChem N2 - Although catalytic reductions, cross-couplings, metathesis, and oxidation of C=C double bonds are well established, the corresponding catalytic hydroxylations of C–H bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, 'greenest', and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial-scale, owing to a low space-time-yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale. KW - Coupling reactions KW - Feedstocks KW - Hydroxylation KW - Molecular oxygen KW - Oxidation KW - Catalytic oxidation KW - Micro reactor KW - Explosion KW - Safety PY - 2013 DO - https://doi.org/10.1002/cctc.201200266 SN - 1867-3880 VL - 5 IS - 1 SP - 82 EP - 112 PB - Wiley-VCH CY - Weinheim AN - OPUS4-27637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher A1 - Wagner, Patrick A1 - Rappsilber, Tim A1 - Liebner, Christian A1 - Hahn, S.-K. A1 - Krause, U. T1 - Harmful effects of lithium-ion battery thermal runaway: scale-up tests from cell to second-life modules JF - RSC Advances N2 - For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six second-life module tests (2.65 kW h and 6.85 kW h) with an NMC-cathode under similar initial conditions were conducted. The temperature (direct at cells/modules and in near field), mass loss, cell/module voltage, and qualitative vent gas composition (Fourier transform infrared (FTIR) and diode laser spectroscopy (DLS) for HF) were measured. The results of the tests showed that the battery TR is accompanied by severe and in some cases violent chemical reactions. In most cases, TR was not accompanied by pregassing of the modules. Jet flames up to a length of 5 m and fragment throwing to distances to more than 30 m were detected. The TR of the tested modules was accompanied by significant mass loss of up to 82%. The maximum HF concentration measured was 76 ppm, whereby the measured HF concentrations in the module tests were not necessarily higher than that in the cell stack tests. Subsequently, an explosion of the released vent gas occurred in one of the tests, resulting in the intensification of the negative consequences. According to the evaluation of the gas measurements with regard to toxicity base on the “Acute Exposure Guideline Levels” (AEGL), there is some concern with regards to CO, which may be equally as important to consider as the release of HF. KW - Large-scale tests KW - Lithium-ion battery KW - Gas emission KW - Thermal runaway KW - Consequences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579054 DO - https://doi.org/10.1039/D3RA02881J SN - 2046-2069 VL - 13 IS - 30 SP - 20761 EP - 20779 PB - Royal Society of Chemistry (RSC) CY - Cambridge, UK AN - OPUS4-57905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -