TY - JOUR A1 - Wintzheimer, S. A1 - Szczerba, Wojciech A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kashiwaya, S. A1 - Klein, A. A1 - Jaegermann, W. A1 - Toupance, T. A1 - Shmeliov, A. A1 - Nicolosi, V. A1 - Heuzé, K. A1 - Mandel, K. A1 - Dembski, S. T1 - Discovering the determining parameters for the photocatalytic activity of TiO2 colloids based on an anomalous dependence on the specific surface area JF - Particle & Particle Systems Characterization N2 - The photocatalytic (PC) performance of titanium dioxide (TiO2) nanoparticles strongly depends on their specific surface, the presence of crystal defects, their crystal phase, and the exposed crystal facets. In order to understand which of these factors contributes most significantly to the PC activity of TiO2 colloids, all of them have to be individually analyzed. This study entails the synthesis of five anatase nanocrystal samples. By maintaining the same reactant ratios as well as hydrothermal sol–gel synthesis route and only varying the autoclaving time or temperature, different crystallite sizes are obtained under comparable experimental conditions. A decrease in PC performance with increase in specific surface area is found. Such an unexpected counterintuitive result establishes the basis for a better understanding of the crucial factors that ultimately determine the PC activity. These are investigated by studying nanocrystals bulk and surface structure and morphology using a selection of complementary analysis methods (X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS), X-ray diffraction (XRD)…). It is found that a change in the nanocrystal morphology from an equilibrium state truncated tetragonal bipyramid to a more elongated rod-like structure accompanied by an increase in oxygen vacancies is responsible for an augmented PC activity of the TiO2 nanocrystals. KW - Ti-based colloids KW - Photocatalysis KW - Spectroscopy KW - XAFS PY - 2018 DO - https://doi.org/10.1002/ppsc.201800216 SN - 0934-0866 SN - 1521-4117 VL - 35 IS - 9 SP - 1800216, 1 EP - 10 PB - Wiley Online Library AN - OPUS4-46068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning T2 - Community EMPIR Project 17NRM04 nPSize (Improved traceability chain of nanoparticle size measurements) N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -