TY - CONF A1 - Reuter, T. A1 - Borges de Oliveira, F. A1 - Abt, Ch. A1 - Ballach, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Dennerlein, F. A1 - Fuchs, P. A1 - Günnewig, O. A1 - Hausotte, T. A1 - Hess, J. A1 - Kasperl, S. A1 - Maass, N. A1 - Kimmig, W. A1 - Schielein, R. A1 - von Schmid, M. A1 - Suppes, A. A1 - Wagner, G. A1 - Watzl, Ch. A1 - Wohlgemuth, F. T1 - Introduction to “Realistic Simulation of real CT systems with a basic-qualified Simulation Software - CTSimU2“ N2 - The lack of traceability to meter of X-ray Computed Tomography (CT) measurements still hinders a more extensive acceptance of CT in coordinate metrology and industry. To ensure traceable, reliable, and accurate measurements, the determination of the task-specific measurement uncertainty is necessary. The German guideline VDI/VDE 2630 part 2.1 describes a procedure to determine the measurement uncertainty for CT experimentally by conducting several repeated measurements with a calibrated test specimen. However, this experimental procedure is cost and effort intensive. Therefore, the simulation of dimensional measurement tasks conducted with X-ray computed tomography can close these drawbacks. Additionally, recent developments towards a resource and cost-efficient production (“smart factory”) motivate the need for a corresponding numerical model of a CT system (“digital twin”) as well. As there is no standardized procedure to determine the measurement uncertainty of a CT system by simulation at the moment, the project series CTSimU was initiated, aiming at this gap. Concretely, the goal is the development of a procedure to determine the measurement uncertainty numerically by radiographic simulation. The first project (2019-2022), "Radiographic Computed Tomography Simulation for Measurement Uncertainty Evaluation - CTSimU" developed a framework to qualify a radiographic simulation software concerning the correct simulation of physical laws and functionalities. The most important outcome was a draft for a new guideline VDI/VDE 2630 part 2.2, which is currently under discussion in the VDI/VDE committee. The follow-up project CTSimU2 "Realistic Simulation of real CT systems with a basic-qualified Simulation Software" will deal with building and characterizing a digital replica of a specific real-world CT system. The two main targets of this project will be a toolbox including methods and procedures to configure a realistic CT system simulation and to develop tests to check if this replica is sufficient enough. The result will be a draft for a follow-up VDI/VDE guideline proposing standardized procedures to determine a CT system's corresponding characteristics and test the simulation (copy) of a real-world CT system which we call a "digital twin". T2 - 12th Conference on Industrial Computed Tomography (iCT) 2023 CY - Fürth, Germany DA - 27.02.2023 KW - dXCT KW - X-ray computed tomography KW - Simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589204 DO - https://doi.org/10.58286/27715 VL - 28 IS - 3 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-58920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borges de Oliveira, F. A1 - Reuter, T. A1 - Plotzki, David A1 - Wohlgemuth, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Kasperl, S. T1 - Assessment of 2D-based tests for the qualification of simulation software for dXCT N2 - The interest in using computer simulations of dimensional x-ray computed tomography (dXCT) for various metrological purposes—such as measurement planning, performance prediction, performance optimisation and, finally, measurement uncertainty estimation—is increasing along with the ever-growing demand for more reliable measurements with dXCT. However, before a piece of simulation software can be used for tasks related to coordinate metrology, it has to be ensured that it is able to simulate physical laws, characteristic effects and basic CT system functionalities correctly and with sufficient accuracy. In short, the software must be qualified for dimensional metrology tasks. As one part of such a qualification process, a method is presented here for determining conformity intervals of 2D tests (projection-based tests) based on 3D tests (testing based on dimensional evaluations in a reconstructed volume) for the assessment of dXCT simulation software. The method consists of varying relevant parameter values in order to verify their influence on 3D measurement results. The results of the 3D tests with varied parameter values are then transferred to the quantities tested in the 2D tests and used as the basis for determining conformity intervals. Two approaches are applied for determining whether or not a variation of a parameter value is significant: (a) statistical and (b) heuristic. Two examples are presented, each based on simulated images, which show the application of the two different approaches for determining conformity intervals for the results of the 2D tests. KW - dXCT KW - X-ray computed tomography KW - Simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573316 DO - https://doi.org/10.1088/1361-6501/acc1f9 VL - 34 IS - 6 SP - 1 EP - 12 PB - IOP Publishing AN - OPUS4-57331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kasperl, S. T1 - Realistic simulation of real X-ray computed tomography systems with basic-qualified simulation software - the CTSimU2 project N2 - Industrial X-ray computed tomography (CT) completely captures workpieces, including their inner and outer structures for metrology purposes. However, previous effort to determine task-specific measurement uncertainty is not always justifiable. Simulating the measuring process allows to estimate measurement uncertainty numerically and to predict systematic measurement deviations. For any future simulation applications it is essential that the simulation is reliable. The WIPANO research project CTSimU2 – “Realistic Simulation of Realistic X-Ray Computed Tomography Systems with basic-qualified simulation software” aims to develop tools for realistic replication of industrial CT systems in a simulation software. As a precondition, simulation software systems must be basic-qualified by the test framework developed in the previous project CTSimU1. The test framework tests sufficient physical correctness and functionality of the software. For a realistic simulation, not only the quality of the software, but in particular the quality of the real CT system’s parameterization within the simulation software is crucial. Four steps yield the desired parametrization: First, acquire data on the real CT system (step 1), evaluate data to generate general parameter specifications (step 2), transfer parameters into the specific simulation software (step 3), and validate parameters with a suitable test (step 4). In addition to developing a toolbox with general methods for data acquisition and data evaluation, this project therefore aims to develop a test, on the basis of which the sufficiently correct simulation of a real system can be evaluated. As in the preliminary project CTSimU1, the results obtained are to be transferred into a draft guideline for the VDI/VDE 2630 series of guidelines. This article presents an overview of the project and the initial results. Acknowledgments: This work was funded through the project Wipano-CTSimU2 (WIPANO project 03TN0049A-L). WIPANO projects are financed by the German Federal Ministry for Economic Affairs and Climate Action and managed by Project Management Jülich. T2 - 20th World Conference on Non-Destructive Testing (WCNDT 2024) CY - Incheon, South Korea DA - 27.05.2024 KW - Computed Tomography KW - Simulation KW - Digital Twin PY - 2024 AN - OPUS4-61795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ballach, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Borges de Oliveira, F. A1 - Braun, M. A1 - Dennerlein, F. A1 - Flessner, M. A1 - Fuchs, P. A1 - Günnewig, O. A1 - Hausotte, T. A1 - Hess, J. A1 - Kasperl, S. A1 - Kirschbaum, K. A1 - Li, K. A1 - Maass, N. A1 - Mayer, T. A1 - Orth, Anthony A1 - Reuter, T. A1 - Suppes, A. A1 - von Schmid, M. A1 - Weiß, D. T1 - Realistische Simulation realer Röntgencomputertomografie-Systeme mit basisqualifizierter Simulationssoftware – CTSimU2 BT - Abschlussbericht N2 - Das Förderprojekt CTSimU2 baute auf den Ergebnissen des Projektes CTSimU auf. Dieses Vorprojekt erarbeitete ein (Basis-)Qualifizierungsframework für Simulationssoftwares zur Anwendung bei der Röntgen-CT für dimensionelle Messungen. Dabei stand die ausreichende physikalische Korrektheit der Durchstrahlungssimulation im Vordergrund. Für die realitätsnahe Simulation einer CT-Anlage in einer Simulationssoftware (Digitales Modell) ist jedoch nicht nur die Korrektheit der Simulationssoftware selbst, sondern auch die Güte der Parametrisierung des realen CT-Systems in der Simulationssoftware entscheidend – dies stellte den Ausgangspunkt dar. Die Parametrisierung eines CT-Systems in einer Simulationssoftware lässt sich in vier Schritte unterteilen: nach der Datenaufnahme am realen CT-System folgt die Auswertung der aufgenommenen Daten für die Generierung allgemeiner Parameterangaben. Als letztes folgte die Übertragung der Parameter in die spezifischen Simulationssoftwares und die Validierung der resultierenden Simulationsparameter. Die Methodik der Datenaufnahme am CT und die Auswertung der Daten wurde in einem Werkzeugkasten allgemein beschrieben. Der dritte Schritt, die Umsetzung der Parameter, war softwarespezifisch und wurde beispielhaft mit den vorhandenen Simulationssoftwares durchgeführt. Die Validierung der Parameter war standardisierbar und konnte durch den entwickelten Test geleistet werden, auf dessen Basis die ausreichend korrekte Simulation einer realen Anlage beurteilt werden konnte. Endresultat des Projektes war ein Richtlinienentwurf (z. B. VDI/VDE 2630) zu diesem Test, der einen informativen Annex zum Stand der Technik bezüglich der Möglichkeiten zur Parameterbestimmung enthält. Mit einer Simulationssoftware, die die Basisqualifizierung aus CTSimU bestanden hat und einen Parameterdatensatz für ein reales CT-System enthält, der den Test aus CTSimU2 bestanden hat, können realistische Simulationen dieses CT-Systems möglich sein. KW - Computertomografie KW - Simulation KW - Dimensionelles Messen PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641719 DO - https://doi.org/10.34657/21602 N1 - Dieses Projekt wurde durch die Förderrichtlinie WIPANO gefördert und durch das Bundesministerium für Wirtschaft und Klimaschutz (2022 -2025) finanziert. Der Projektträger Jülich verwaltet die Projekte der Förderrichtlinie WIPANO. SP - 1 EP - 22 PB - TIB Technische Informationsbibliothek CY - Hannover AN - OPUS4-64171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -