TY - JOUR A1 - Sieksmeyer, T. A1 - He, S. A1 - Esparza-Mora, M. A. A1 - Jiang, S. A1 - Petrasiunaite, V. A1 - Kuropka, B. A1 - Banasiak, Robert A1 - Julseth, M. J. A1 - Weise, C. A1 - Johnston, P. R. A1 - Rodriguez-Rojas, A. A1 - McMahon, Dino Peter T1 - Eating in a losing cause: Limited benefit of modifed macronutrient consumption following infection in the oriental cockroach Blatta orientalis JF - BMC ecology and evolution N2 - Background: Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results: We fnd that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches signifcantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited efect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on diferent diets, regardless of infection status. Conclusions: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide signifcant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent beneft of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted. KW - Animal immune system KW - A key interface KW - Host and symbiont ecology KW - Behavioural mechanisms KW - Biotic environment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550022 DO - https://doi.org/10.1186/s12862-022-02007-8 SN - 2730-7182 VL - 22 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London, UK AN - OPUS4-55002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, C. A1 - Xie, G. A1 - Wu, Dejian A1 - Yan, T. A1 - Chen, S. A1 - Zhao, P. A1 - Wu, Z. A1 - Li, W. T1 - Experimental investigation on an energy-efficient floor heating system with intelligent control: A case study in Chengdu, China JF - Case Studies in Thermal Engineering N2 - The space heating system accounts for 20%~50% of building energy consumption, and may lead to energy waste due to unreasonable controls. In this study, an energy-efficient floor heating system with intelligent control was proposed to improve energy efficiency of the system. In order to validate the concept of the proposed intelligent control, an experimental system was designed and constructed in Chengdu, China. Temperature, control cycle and energy consumption were then studied under different control strategies. The result shows that a larger flow rate of supply water will result in a longer control cycle and a lower control frequency, i.e., the average control cycle at 7 L min−1 is 1.7 h during the test day, while it is 1.5 h at 5 L min−1. Moreover, adopting water with a higher temperature and flow rate could achieve a higher efficiency of the system. The energy consumptions in case 1 (5 L min−1, 50 °C), case 2 (5 L min−1, 55 °C), case 5 (7 L min−1, 55 °C) and case 6 (7 L min−1, 60 °C) are 4746 kJ, 3534 kJ, 3093 kJ and 3028 kJ, respectively. Based on the experimental data, the supply water temperature is suggested to set lower than 60 °C considering human comfort. KW - Floor heating KW - Intelligent control KW - Experimental KW - Energy consumption KW - Control strategy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550522 DO - https://doi.org/10.1016/j.csite.2021.101094 SN - 2214-157X VL - 26 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-55052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells JF - ACS Applied Nano Materials N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563106 DO - https://doi.org/10.1021/acsanm.2c03252 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, J.-Y. A1 - Hou, X.-N. A1 - Tian, Y. A1 - Jiang, L. A1 - Deng, S. A1 - Röder, B. A1 - Ermilov, Eugeny T1 - Photoinduced energy and charge transfer in a bis(triphenylamine)-BODIPY-C60 artificial photosynthetic system JF - RSC Advances N2 - Triphenylamines (TPAs), boron dipyrromethenes (BODIPYs) and fullerenes C60 are excellent building blocks for the design of artificial photosynthetic systems. In the present work, we report the synthesis, characterization and detailed photophysical studies of a novel (TPA)2–BODIPY–C60 tetrad in polar and nonpolar solvents. The absorption spectrum of this compound covered virtually the entire visible Region (350–700 nm) and could be interpreted as a superposition of the spectra of individual components. Upon TPA-part excitation, a fast and very efficient excitation energy transfer (EET) delivers the excitation to the BODIPY moiety resulting in complete quenching of the TPA first excited singlet state as well as the appearance of the BODIPY fluorescence. The efficiency of EET process was estimated to be 1. Direct or indirect (via EET) excitation of the BODIPY-part of the tetrad is followed by photoinduced charge transfer to the charge-separated state BODIPY+–C60- irrespective of the solvent used. In polar N,N-dimethylformamide (DMF)charge recombination occurs directly to the ground state with the Charge recombination rate, kCR, slower than 108 s-1, whereas in nonpolar toluene (TOL) a small energy gap between the charge-separated state and first excited singlet state of the BODIPY moiety facilitates the back charge transfer process. The latter results in the appearance of thermally activated delayed fluorescence. The rate of charge separation was found to be ca. 2 times faster in TOL than in DMF. KW - Charge transfer KW - Energy transfer KW - Artificial photosynthesis KW - BODIPY KW - TPA KW - Fullerene C60 PY - 2016 DO - https://doi.org/10.1039/c6ra06841c SN - 2046-2069 VL - 6 IS - 62 SP - 57293 EP - 57305 AN - OPUS4-37080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shixiong A1 - Marco, H. G. A1 - Scheich, Nina A1 - He, S. A1 - Wang, Z. A1 - Gäde, G. A1 - McMahon, Dino Peter T1 - Comparative analysis of adipokinetic hormones and their receptors in Blattodea reveals novel patterns of gene evolution JF - Insect Molecular Biology N2 - Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches. KW - Adipokinetic hormone KW - Adipokinetic hormone receptor KW - ‘Green’ pesticide KW - Neuropeptide KW - Termite PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579141 DO - https://doi.org/10.1111/imb.12861 SN - 0962-1075 SP - 1 EP - 19 PB - Wiley online library CY - London, UK AN - OPUS4-57914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -