TY - JOUR A1 - Nilsson, R. H. A1 - Taylor, A. F. S. A1 - Adams, R. I. A1 - Baschien, C. A1 - Bengtsson-Palme, J. A1 - Cangren, P. A1 - Coleine, C. A1 - Iršėnaitė, R. A1 - Martin-Sanchez, Pedro Maria A1 - Meyer, W. A1 - Oh, S.-Y. A1 - Sampaio, J. P. A1 - Seifert, K. A. A1 - Sklenář, F. A1 - Stubbe, D. A1 - Suh, S.-O. A1 - Summerbell, R. A1 - Svantesson, S. A1 - Unterseher, M. A1 - Visagie, C. M. A1 - Weiss, M. A1 - Woudenberg, J. HC. A1 - Wurzbacher, C. A1 - Van den Wyngaert, S. A1 - Yilmaz, N. A1 - Yurkov, A. A1 - Kõljalg, U. A1 - Abarenkov, K. A1 - Daniel, H.-M. A1 - Glassman, S. I. A1 - Hirooka, H. A1 - Irinyi, L. T1 - Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK) JF - MycoKeys N2 - Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi – whether transient visitors or more persistent residents – may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxo¬nomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions – such as country and host/substrate of collection – are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10–11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS bar¬code sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes – including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences – were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment. KW - Indoor mycobiome KW - Built environment KW - Molecular identification KW - Fungi KW - Taxonomy KW - Systematics KW - Sequence annotation KW - Metadata KW - Open data PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438949 DO - https://doi.org/10.3897/mycokeys.28.20887 SN - 1314-4049 SN - 1314-4057 VL - 28 SP - 65 EP - 82 PB - Pensoft Publishers CY - Washington, DC AN - OPUS4-43894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gartiser, S. A1 - Heisterkamp, I. A1 - Schoknecht, Ute A1 - Burkhardt, M. A1 - Ratte, M. A1 - Ilvonen, O. A1 - Brauer, F. A1 - Brückmann, J. A1 - Dabrunz, A. A1 - Egeler, P. A1 - Eisl, A.-M. A1 - Feiler, U. A1 - Fritz, I. A1 - König, S. A1 - Lebertz, H. A1 - Pandard, P. A1 - Pötschke, G. A1 - Scheerbaum, D. A1 - Schreiber, F. A1 - Soldán, P. A1 - Weiß, R. A1 - Weltens, R. T1 - Results from a round robin test for the ecotoxicological evaluation of construction products using two leaching tests and an aquatic test battery JF - Chemosphere N2 - A European round robin test according to ISO 5725-2 was conceptually prepared, realised, and evaluated. The aim was to determine the inter-laboratory variability of the overall process for the ecotoxicological characterization of construction products in eluates and bioassays. To this end, two construction products BAM-G1 (granulate) and HSR-2 (roof sealing sheet), both made of EPDM polymers (rubber), were selected. The granular construction product was eluted in a one stage batch test, the planar product in the Dynamic Surface Leaching test (DSLT). A total of 17 laboratories from 5 countries participated in the round robin test: Germany (12), Austria (2), Belgium (1), Czech Republic (1) and France (1). A test battery of four standardised ecotoxicity tests with algae, daphnia, luminescent bacteria and zebrafish eggs was used. As toxicity measures, EC50 and LID values were calculated. All tests, except the fish egg test, were basically able to demonstrate toxic effects and the level of toxicity. The reproducibility of test results depended on the test specimens and the test organisms. Generally, the variability of the EC50 or LID values increased with the overall level of toxicity. For the very toxic BAM-G1 eluate a relative high variability of CV ¼ 73%e110% was observed for EC50 in all biotests, while for the less toxic HSR-2 eluate the reproducibility of EC50 varied with sensitivity: it was very good (CV ¼ 9.3%) for the daphnia test with the lowest sensitivity, followed by the algae test (CV ¼ 36.4%). The luminescent bacteria test, being the most sensitive bioassay for HSR-2 Eluate, showed the highest variability (CV ¼ 74.8%). When considering the complex overall process the reproducibility of bioassays with eluates from construction products was acceptable. KW - Round robin test KW - Construction products KW - Leaching tests KW - Eluates KW - Ecotoxicity tests PY - 2017 DO - https://doi.org/10.1016/j.chemosphere.2017.01.146 SN - 0045-6535 SN - 1879-1298 VL - 175 SP - 138 EP - 146 PB - Elsevier Ltd. AN - OPUS4-39174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weiss, S. I. A1 - Sieverling, N. A1 - Niclasen, M. A1 - Maucksch, Ch. A1 - Thünemann, Andreas A1 - Möhwald, H. A1 - Reinhardt, D. A1 - Rosenecker, J. A1 - Rudolph, C. T1 - Uronic acids functionalized polyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers JF - Biomaterials N2 - In this study, we investigated galacturonic (GalAc)- and mannuronic (ManAc) acids as novel targeting ligands for receptor-mediated gene delivery. GalAc and ManAc were coupled to either polyethyleneimine (PEI) or PEI–polyethyleneglycol (PEG). Furthermore, lactobionic acid (LacAc), which comprises a GalAc-related carbohydrate ring, was coupled to each of the polymers through its open-chain gluconic acid moiety. The molar mass distributions of the polymers were characterized by analytical ultracentrifugation and size exclusion chromatography. PEI-conjugate–pDNA complexes were transfected into HepG2-, HeLa-, and 16HBE14o--cells. Gene expression mediated by GalAc- and LacAc-functionalized PEI-conjugates was lower than for PEI. In contrast, gene expression mediated by ManAc-functionalized PEI-conjugates was up to three orders of magnitude higher than for the other tested PEI-conjugates, in particular for negatively charged gene vectors at low N/P ratios, independent of the cell line. Pre-incubation of cells with an excess of ManAc before transfection significantly inhibited transfection rates only for ManAc-functionalized PEI-conjugates. Coupling of methyl-α-D-mannuronic acid to PEI resulted in significantly lower transfection rates than for ManAc-PEI based complexes. Together with fluorescence microscopy images of fluorescein-labelled ManAc-functionalized dextrans and FACS analyses of cells, these results demonstrate that receptor-mediated endocytosis of ManAc–PEI-conjugate–pDNA complexes via ManAc-specific receptors was involved in gene transfer. In conclusion, ManAc-modification of PEI-polymers represents a novel strategy for receptor-mediated gene delivery which could be promising for in vivo application. KW - Gene therapy KW - Gene transfer KW - Polyethylene oxide KW - Nanoparticle PY - 2006 DO - https://doi.org/10.1016/j.biomaterials.2005.11.011 SN - 0142-9612 VL - 27 IS - 10 SP - 2302 EP - 2312 PB - Elsevier CY - Oxford AN - OPUS4-11678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -