TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Hecht, Kristin A1 - Gabel, D. A1 - Zakel, S. A1 - Krietsch, Arne T1 - Requirements for a Hybrid Dust-Gas-Standard: Influence of the Mixing Procedure on Safety Characteristics of Hybrid Mixtures JF - Fire N2 - While developing a standard for the determination of safety characteristics for hybrid mixtures the authors discovered, that, beside the ignition source, the mixing procedure is the main difference between the single-phase standards for dusts and gases. The preparation of hybrid mixtures containing a flammable gas and a flammable dust in the 20 L-sphere can be realized in different ways. Either the flammable gas is filled only in the sphere or only in the dust container or in both. In previous works, almost always the first method is applied, without giving any information on the accuracy of the gas mixtures. In this work the accuracy of the gas mixtures and the results of the tests applying two methods of mixing were studied. No significant influence of the mixing method itself on the safety characteristics explosion pressure pex and the normalized rate of pressure rise (K-value) was found. Obviously, homogenization of the gas mixtures can be obtained sufficiently by the turbulence that is caused during the injection from the dust container into the explosion chamber within a short time. However, the mixing procedure has a great influence on the accuracy of the gas amount of the mixtures obtained. Without modifying the 20 L-sphere by installing precise pressure sensors, assuring its tightness and performing gas analysis, it must be expected, that the accuracy of the gas mixtures is very low. This has a significant influence on the measured safety characteristics and may lead to unsafe facilities or unnecessary expensive safety measures. KW - Hybrid mixtures KW - 20 L-sphere KW - Pre-ignition pressure rise KW - Post-injection pressure drop KW - Safety characteristics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554610 DO - https://doi.org/10.3390/fire5040113 VL - 5 IS - 4 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-55461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -