TY - JOUR A1 - Albert, F. A1 - Baum, S. A1 - Goecke, S. A1 - Müller, A. A1 - Sievi, P. A1 - Rethmeier, Michael T1 - Nahtgeführtes Laserstrahl-Remoteschweißen mit Strahloszillation - Beeinflussung der Schweißnahtanmutung, der Schweißnahtgeometrie und der Spaltüberbrückbarkeit PY - 2013 SN - 0036-7184 VL - 65 IS - 9 SP - 631 EP - 635 PB - Verl. für Schweißen u. Verwandte Verfahren, DVS-Verl. CY - Düsseldorf AN - OPUS4-29300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.F. A1 - Rethmeier, Michael T1 - Laser beam oscillation for fillet welding N2 - In today’s automotive frame-and-body construction, laser welds are typically carried out as square butt welds in lap joints. These welds are increasingly produced by remote laser welding optics with working distances of 500 mm and more. This enables simple path programming because clamping devices are traversed over and therefore low cycle times with improved productivity is achieved. However, workpiece tolerances lead to part displacements and varying joint positions over time. These displacements have to be acted against by appropriate flange length that contain for positioning deviations. Using this concept, aspired light-weight optimisations, e.g. reducing flange length, are difficult to achieve. By using seam tracking sensors, part tolerances are automatically detected and counteracted for. In addition, joint edge detection allows constructive changes on the type of weld. Fillet welds reduce flange lengths', improve force flow and open up possibilities for visual quality monitoring. Apart from that, vertical displacements in the form of height tolerances still occur. This needs consideration by adapting the set of welding parameter to the current welding situation. In this respect, one main welding parameter is the lateral beam offset to the upper sheet. Since body-in-white welding applications mainly comprise of zinc-coated steel sheets, special requirements for the welding process are given. Especially zero-gap-welding and welding of joints with gaps larger than 0.2 mm are critical. Using a laser beam oscillation process can stabilise these situations. Approaches to finding parameter sets are presented in this paper. KW - Laser beams KW - Welding KW - Fillet welds KW - Gap KW - Process procedures KW - Monitoring systems PY - 2014 DO - https://doi.org/10.1007/s40194-014-0165-4 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 6 SP - 865 EP - 872 PB - Springer CY - Oxford AN - OPUS4-32075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.-F. A1 - Sievi, P. A1 - Albert, F. A1 - Rethmeier, Michael T1 - Laser beam oscillation strategies for fillet welds in lap joints N2 - Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 µm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them. KW - Laser beam welding KW - Gap compensation KW - Process monitoring and control KW - System technology KW - Automotive application PY - 2014 DO - https://doi.org/10.1016/j.phpro.2014.08.149 SN - 1875-3892 VL - 56 SP - 458 EP - 466 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-31437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebert-Spiegel, M. A1 - Goecke, S.-F. A1 - Rethmeier, Michael T1 - Efficient gap filling in MAG welding using optical sensors N2 - MAG welding is widely used for thin sheet metal applications such as car body structures due to its ability to tolerate a fair amount of deviation of the components from the ideal shape. In MAG welding, the process window is sufficiently large to accommodate the expected component tolerances. In practice, however, quality control is an issue since most welds are produced with parameters outside of the optimum range, especially in the case of automated MAG welding. To ensure best performance, a robust real-time control law is needed that adapts critical process parameters to the changing conditions, most notably the variation in gap height. Here, the gap-dependent adaptive control algorithm for the deposition of filler material and the related energy input comes into play. With an optical sensor that is mounted in front of the torch, the system measures the actual position of the two components in real-time during the entire welding process and the controller adapts the relevant parameters accordingly using a dynamic process model. This optimization ensures that only the required filler material is used and the associated energy input is tightly controlled to assure best quality even in a fully automated welding process. KW - MAG welding KW - Sheet KW - Robots KW - Automation KW - Sensors KW - Adaptive control PY - 2014 DO - https://doi.org/10.1007/s40194-014-0145-8 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 5 SP - 637 EP - 647 PB - Springer CY - Oxford AN - OPUS4-31438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebert-Spiegel, M. A1 - Goecke, S.-F. A1 - Rethmeier, Michael T1 - Possibilities for compensating a higher heat input, in particular by the torch offset relative to the top sheet at the fillet weld on a lap joint N2 - This paper deals with the use of an adaptive control system for compensating the variation in the gap height of a fillet welded lap joint. Gap bridging requires the input of additional filler material and is related to an increased energy input. Hence, the aim was a compensation of the effect of an increased heat input, in order to maintain the weld pool and excessive penetration, which can prevent consequently root reinforcement and burn-through. The findings achieved in this work show possibilities for a real-time controlled adjustments of the welding parameters in automated metal active gas (MAG) welding for compensating a higher heat input, in particular by means of the torch offset relative to the top sheet at the fillet weld on a lap joint. KW - MAG welding KW - Adaptive control KW - High strength steels KW - Gap KW - Energy input KW - Mathematical models PY - 2015 DO - https://doi.org/10.1007/s40194-015-0220-9 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 443 EP - 453 PB - Springer CY - Oxford AN - OPUS4-33079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.F. A1 - Rethmeier, Michael T1 - Laser beam oscillation welding for automotive applications N2 - Laser beam oscillation, applied one- or two-dimensional to the actual welding process, influences the welding process in terms of compensation of tolerances and reduction of process emissions like spatter and melt ejections that occur in industrial applications, such as in body-in-white manufacturing. If the welding process could be adapted to these tolerances by the momentarily demanded melt pool width to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing, laser welding would become more robust. However, beam oscillation results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies which are adjusted to the joining situation can bridge gaps to approximately 0.6 mm at metal sheet thickness of 0.8 mm. However, the complex behaviour of the melt pool has to be considered to generate proper welding results. This work puts emphasis on showing aspects of beam oscillation in fillet welding in lap joints. KW - Automotive application KW - Melt pool dynamics KW - Adaptive welding beam oscillation KW - Laser welding KW - Gap bridging PY - 2018 DO - https://doi.org/10.1007/s40194-018-0625-3 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1039 EP - 1047 PB - Springer AN - OPUS4-45774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -