TY - JOUR A1 - Haase, A. A1 - Arlinghaus, H. F. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Galla, S. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Masic, A. A1 - Meier, W. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. T1 - Application of laser postionization secondary neutral mass spectrometry / time-of-flight secondary ion mass spectrometry in nanotoxicology: Visualization of nanosilver in human macrophages and cellular responses JF - ACS nano N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible. KW - Nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - Confocal Raman microscopy KW - Oxidative stress KW - Protein carbonyls PY - 2011 DO - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tentschert, J. A1 - Draude, F. A1 - Jungnickel, H. A1 - Haase, A. A1 - Mantion, Alexandre A1 - Galla, S. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment JF - Surface and interface analysis N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained. KW - Silver nanoparticles KW - Lipidomics KW - N-acetyl cysteine KW - Phagocytosis KW - Oxidative stress KW - Reference material PY - 2013 DO - https://doi.org/10.1002/sia.5155 SN - 0142-2421 SN - 1096-9918 VL - 45 IS - 1 SP - 483 EP - 485 PB - Wiley CY - Chichester AN - OPUS4-27586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -