TY - CHAP A1 - Küttenbaum, Stefan A1 - Feistkorn, S. A1 - Braml, T. A1 - Taffe, A. A1 - Maack, Stefan ED - Rizzo, P. ED - Milazzo, A. T1 - Methods to Quantify the Utility of NDT in Bridge Reassessment T2 - Lecture Notes in Civil Engineering. European Workshop on Structural Health Monitoring. Special Collection of 2020 Papers - Volume 1 N2 - The purpose of this contribution is to introduce and to apply the developed approach of incorporating non-destructively gathered measurement results (instead of deterministic information and assumptions) into a reassessment model of a typical prestressed concrete road bridge and to outline the advantages. An essential part is the quality evaluation of the non-destructively measured information, that deals primarily with two questions. Could the object or parameter to be obtained reliably detected and if, how accurate are the inspection results achieved? Therefore, the importance of the combination of a probability of detection (POD)-approach and measurement uncertainty calculations is emphasized. With regard to the introduced case-study it is shown, for which structure parameters an assumption deviating from the actual (and measurable) situation has a particularly strong (and possibly arithmetically unfavorable) influence on the structural reliability. Measurements on such parameters are particularly beneficial for a reliable and robust reassessment. In conclusion, the individual reassessment results without consideration and with consideration of evaluated non-destructive inspection results are compared. KW - Non-destructive testing (NDT) KW - Structural safety KW - Concrete bridges KW - Measurement uncertainty KW - Probability of detection (POD) PY - 2021 SN - 978-3-030-64593-9 DO - https://doi.org/10.1007/978-3-030-64594-6_40 SN - 2366-2557 VL - 127 SP - 403 EP - 413 PB - Springer Nature Switzerland CY - Cham, Switzerland AN - OPUS4-52009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -