TY - JOUR A1 - Kingelhöffer, Hellmuth A1 - Affeldt, E. E. A1 - Bache, M. A1 - Bartsch, M. A1 - Beck, T. A1 - Christ, H. J. A1 - Fedelich, Bernard A1 - Hähner, P. A1 - Holdsworth, S. R. A1 - Lang, K.-H. A1 - McGaw, M. A1 - Olbricht, Jürgen A1 - Remy, L. A1 - Skrotzki, Birgit A1 - Stekovich, S. T1 - Editorial - Special issue: Recent developments in thermo-mechanical fatigue JF - International journal of fatigue N2 - Components in the Aerospace, Power and Automotive engineering sectors are frequently subjected to cyclic stresses induced by thermal fluctuations and mechanical loads. For the design of such components, reliable material property data are required which need to be acquired using well accepted and reproducible test procedures for thermo-mechanical fatigue (TMF) loading. There is limited availability of proven TMF data indicating there is need for further research and testing. The TMF behaviour of materials is often desired to be simulated in models which describe the cyclic stress-strain behaviour, the fatigue life and the cyclic crack growth behaviour. There is a continuous need for the development and amendment of such models. Models can be validated by using materials in industrial applications which are subjected to TMF loading. The 3rd Workshop on Thermo-Mechanical Fatigue was held on 27–29 April 2016 at BAM, Berlin, Germany. The workshop was attended by 90 attendees coming from 17 countries in the world. 38 presentations including five poster presentations were held. The following topics were covered by the workshop: – TMF of materials coated with Thermal Barrier Coatings. – Thermal Gradient Mechanical Fatigue. – TMF crack growth. – TMF + High Cycle Fatigue. – TMF Modelling and Lifetime Prediction. – TMF Properties of steels, cast iron, Al-, Mg- and Ni-alloys – Advanced TMF Testing Techniques. – Industrial Applications. A panel discussion was held regarding the present state of TMF testing standards (ISO and ASTM) and their potential for improvement. The discussion and contributions were summarized and forwarded to the standard committees. The 3rd TMF-Workshop ensured the continuation of international exchange of knowledge providing a forum to present and discuss all recent developments in the field of thermo-mechanical fatigue. The current special issue publishes eleven selected papers of the 3rd TMF-Workshop 2016. The papers were peer reviewed by a number of experts in the Thermo-Mechanical Fatigue sector. I hope you will enjoy reading papers of this special issue. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Fatigue damage KW - Thermo-mechanical fatigue KW - Fatigue life time KW - Life time prediction KW - TMF PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.02.002 SN - 0142-1123 VL - 99 IS - 2 SP - 215 PB - Elsevier CY - Oxford AN - OPUS4-40895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ebert, H.-P. A1 - Reichenauer, G. A1 - Brandt, R. A1 - Braxmeier, S. A1 - Bauer, T. A1 - Tamme, R. A1 - Langer, W. A1 - Hudler, B. A1 - Christ, M. A1 - Sextl, G. A1 - Müller, G. A1 - Helbig, U. A1 - Houbertz, R. A1 - Voigt, W. A1 - Schmidt, H. A1 - Zehl, T. A1 - Mach, Reinhard A1 - Maneck, Heinz-Eberhard A1 - Meyer-Plath, Asmus A1 - Oleszak, Franz A1 - Keuper, M. A1 - Reisert, M. A1 - Burkhardt, H. A1 - Günther, E. A1 - Mehling, H. T1 - Netzwerk zur Überwindung grundlegender Probleme bei der Entwicklung hocheffizienter Latentwärmespeicher auf Basis anorganischer Speichermaterialien KW - Latentwärmespeicher KW - Materialforschung KW - Plasmaverfahren KW - Graphit PY - 2008 SN - 978-3-00-024699-9 SP - 1 EP - 217 CY - Würzburg AN - OPUS4-18273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Christ, S. A1 - Schäferling, Michael T1 - Chemical sensing and imaging based on photon upconverting nano- and microcrystals: a review JF - Methods and applications in fluorescence N2 - The demand for photostable luminescent reporters that absorb and emit light in the red to near-infrared (NIR) spectral region continues in biomedical research and bioanalysis. In recent years, classical organic fluorophores have increasingly been displaced by luminescent nanoparticles. These consist of either polymer or silica based beads that are loaded with luminescent dyes, conjugated polymers, or inorganic nanomaterials such as semiconductor nanocrystals (quantum dots), colloidal clusters of silver and gold, or carbon dots. Among the inorganic materials, photon upconversion nanocrystals exhibit a high potential for application to bioimaging or biomolecular assays. They offer an exceptionally high photostability, can be excited in the NIR, and their anti-Stokes emission enables luminescence detection free of background and perturbing scatter effects even in complex biological samples. These lanthanide doped inorganic crystals have multiple emission lines that can be tuned by the selection of the dopants. This review article is focused on the applications of functionalized photon upconversion nanoparticles (UCNPs) to chemical sensing. This is a comparatively new field of research activity and mainly directed at the sensing and imaging of ubiquitous chemical analytes in biological samples, particularly in living cells. For this purpose, the particles have to be functionalized with suitable indicator dyes or recognition elements, as they do not show an intrinsic or specific luminescence response to most of these analytes (e.g. pH, oxygen, metal ions). We describe the strategies for the design of such responsive nanocomposites utilizing either luminescence resonance energy transfer or emission–reabsorption (inner filter effect) mechanisms and also highlight examples for their use either immobilized in sensor layers or directly as nanoprobes for intracellular sensing and imaging. KW - Photon upconversion KW - Nanoprobes KW - Chemical sensors KW - Imaging PY - 2015 DO - https://doi.org/10.1088/2050-6120/3/3/034004 SN - 2050-6120 VL - 3 IS - 3 SP - 034004-1 EP - 034004-22 PB - IOP Publ. CY - Bristol AN - OPUS4-33857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arppe, Riika A1 - Hyppänen, I. A1 - Perälä, N. A1 - Peltomaa, R. A1 - Kaiser, Martin A1 - Würth, Christian A1 - Christ, S. A1 - Resch-Genger, Ute A1 - Schäferling, Michael A1 - Soukka, T. T1 - Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation JF - Nanoscale N2 - We have studied the mechanisms of water-based quenching of the upconversion photoluminescence of upconverting nanophosphors (UCNPs) via luminescence decay measurements for a better understanding of the non-radiative deactivation pathways responsible for the relatively low upconversion luminescence efficiency in aqueous solutions. This included both upconversion luminescence measurements and the direct excitation of emissive energy states of Er3+ and Yb3+ dopants in NaYF4:Yb3+,Er3+ UCNPs by measuring the decays at 550 and 655 nm upon 380 nm excitation and at 980 nm upon 930 nm excitation, respectively. The luminescence intensities and decays were measured from both bare and silanized NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ UCNPs in H2O and D2O. The measurements revealed up to 99.9% quenching of the upconversion photoluminescence intensity of both Er3+ and Tm3+ doped bare nanophosphors by water. Instead of the multiphonon relaxation of excited energy levels of the activators, the main mechanism of quenching was found to be the multiphonon deactivation of the Yb3+ sensitizer ion caused by OH-vibrations on the surface of the nanophosphor. Due to the nonlinear nature of upconversion, the quenching of Yb3+ has a higher order effect on the upconversion emission intensity with the efficient Yb–Yb energy migration in the ~35 nm nanocrystals making the whole nanophosphor volume susceptible to surface quenching effects. The study underlines the need of efficient surface passivation for the use of UCNPs as labels in bioanalytical applications performed in aqueous solutions. PY - 2015 DO - https://doi.org/10.1039/c5nr02100f SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 27 SP - 11746 EP - 11757 PB - RSC Publ. CY - Cambridge AN - OPUS4-33815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Näreoja, T A1 - Deguchi, T A1 - Christ, S. A1 - Peltomaa, R A1 - Prabhakar, N A1 - Fazeli, E A1 - Perälä, N A1 - Rosenholm, J A1 - Arppe, Riika A1 - Soukka, T A1 - Schäferling, Michael T1 - Ratiometric Sensing and Imaging of Intracellular pH Using Polyethylenimine-Coated Photon Upconversion Nanoprobes JF - Analytical Chemistry N2 - Measurement of changes of pH at various intracellular compartments has potential to solve questions concerning the processing of endocytosed material, regulation of the acidification process, and also acidification of vesicles destined for exocytosis. To monitor these events, the nanosized optical pH probes need to provide ratiometric signals in the optically transparent biological window, target to all relevant intracellular compartments, and to facilitate imaging at subcellular resolution without interference from the biological matrix. To meet these criteria we sensitize the surface conjugated pH sensitive indicator via an upconversion process utilizing an energy transfer from the nanoparticle to the indicator. Live cells were imaged with a scanning confocal microscope equipped with a low-energy 980 nm laser excitation, which facilitated high resolution and penetration depth into the specimen, and low phototoxicity needed for long-term imaging. Our upconversion nanoparticle resonance energy transfer based sensor with polyethylenimine-coating provides high colloidal stability, enhanced cellular uptake, and distribution across cellular compartments. This distribution was modulated with membrane integrity perturbing treatment that resulted into total loss of lysosomal compartments and a dramatic pH shift of endosomal compartments. These nanoprobes are well suited for detection of pH changes in in vitro models with high biological background fluorescence and in in vivo applications, e.g., for the bioimaging of small animal models. KW - PH sensing KW - Upconversion KW - Nanoparticles KW - Fluorescecne imaging PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b03223 DO - https://doi.org/10.1021/acs.analchem.6b03223 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 3 SP - 1501 EP - 1508 PB - American Chemical Society CY - Washington AN - OPUS4-39083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -