TY - JOUR A1 - Gluth, Gregor A1 - Bernal, S. A. T1 - RILEM TC CUC: Carbon dioxide uptake by concrete during and after service life – Opening Letter N2 - The ability of cement to chemically bind CO2 in a carbonation reaction enables the material to act as a carbon sink, which could partly account for offsetting the CO2 emissions associated with cement production. In response to the many open questions in this context, the RILEM Technical Committee CUC was created in May 2024. The focus of the TC will be to facilitate discussions regarding the current approaches to estimate the CO2 uptake by cementitious materials (concrete and other construction products) during and after service life. This Opening Letter presents aspects of the motivation to establish the TC, a brief overview of the state of the art in the field, the scheduled work programme, and the anticipated impact of the TC outputs. Though it is not intended to be an exhaustive discussion of the challenges to be addressed, from what is summarized in this letter, it is clear that work is required to base estimates of CO2 uptake by cementitious materials on a data set that is as extensive, accurate and forward-looking as possible. It is anticipated that the inclusion of interdisciplinary perspectives and data from academia and industry will enable progress in the field. KW - Cement KW - Concrete KW - Recarbonation KW - Carbon dioxide uptake KW - Carbonation rate PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623724 DO - https://doi.org/10.21809/rilemtechlett.2024.208 SN - 2518-0231 VL - 9 SP - 61 EP - 67 PB - RILEM AN - OPUS4-62372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernal, S. A. A1 - Dhandapani, Y. A1 - Elakneswaran, Y. A1 - Gluth, Gregor A1 - Gruyaert, E. A1 - Juenger, M. C. G. A1 - Lothenbach, B. A1 - Olonade, K. A. A1 - Sakoparnig, M. A1 - Shi, Z. A1 - Thiel, C. A1 - Van den Heede, P. A1 - Vanoutrive, H. A1 - von Greve-Dierfeld, S. A1 - De Belie, N. A1 - Provis, J. L. T1 - Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete N2 - The chemical reaction between CO2 and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO2 (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing conditions are adopted, conflicting carbonation results are often reported. The RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ has conducted a critical analysis of the standardised testing methodologies that are currently applied to determine carbonation resistance of concrete in different regions. There are at least 17 different standards or recommendations being actively used for this purpose, with significant differences in sample curing, pre-conditioning, carbonation exposure conditions, and methods used for determination of carbonation depth after exposure. These differences strongly influence the carbonation depths recorded and the carbonation coefficient values calculated. Considering the importance of accurately determining carbonation potential of concrete, not just for predicting their durability performance, but also for determining the amount of CO2 that concrete can re-absorb during or after its service life, it is imperative to recognise the applicability and limitations of the results obtained from different tests. This will enable researchers and practitioners to adopt the most appropriate testing methodologies to evaluate carbonation resistance, depending on the purpose of the conclusions derived from such testing (e. g. materials selection, service life prediction, CO2 capture potential). KW - Concrete KW - Cement KW - Carbonation KW - Testing KW - Standards PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609364 DO - https://doi.org/10.1617/s11527-024-02424-9 VL - 57 SP - 1 EP - 31 PB - Springer Nature AN - OPUS4-60936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Weiler, L. A1 - Bernal, S. A. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Valentini, L. A1 - Walkley, B. ED - Jędrzejewska, A. ED - Kanavaris, F. ED - Azenha, M. ED - Benboudjema, F. ED - Schlicke, D. T1 - Carbonation of alkali-activated concretes: effects of compositional parameters and carbonation conditions N2 - The current ability to predict the carbonation resistance of alkali-activated materials (AAMs) is incomplete, partly because of widely varying AAM chemistries and variable testing conditions. To identify general correlations between mix design parameters and the carbonation rate of AAMs, RILEM TC 281-CCC Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥66% of the binder) were also included in the database. The results show that the water/CaO ratio is not a reliable indicator of the carbonation rate of AAMs. A better indicator of the carbonation rate of AAMs under conditions approximating natural carbonation is their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the index ‘eq’ indicates an equivalent amount based on molar masses. This finding can be explained by the CO2 binding capacity of alkaline-earth and alkali metal ions; the obtained correlation also indicates an influence of the space-filling capability of the binding phases of AAMs, as for conventional cements. However, this ratio can serve only as an approximate indicator of carbonation resistance, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the dataset revealed peculiarities of accelerated tests using elevated CO2 concentrations for low-Ca AAMs, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of their carbonation resistance under natural exposure conditions. T2 - International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures: SynerCrete 2023 CY - Adamantas, Greece DA - 14.06.2023 KW - Carbonation KW - Alkali-activated materials KW - Mix design PY - 2023 DO - https://doi.org/10.1007/978-3-031-33187-9_94 VL - 2 SP - 1029 EP - 1037 PB - Springer CY - Cham AN - OPUS4-57699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Bernal, S. A. A1 - Cizer, Ö. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Shi, Z. A1 - Valentini, L. A1 - Walkley, B. ED - Escalante-Garcia, J. I. ED - Castro Borges, P. ED - Duran-Herrera, A. T1 - RILEM TC 281-CCC Working Group 6: Carbonation of alkali activated concrete—preliminary results of a literature survey and data analysis N2 - The current understanding of the carbonation of alkali-activated concretes is ham-pered inter alia by the wide range of binder chemistries used. To overcome some of the limitations of individual studies and to identify general correlations between their mix design parameters and carbonation resistance, the RILEM TC 281-CCC working group 6 compiled carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66 % of the binder) were also included in the database. A preliminary analysis of the database indicates that w/CaO ratio and w/b ratio exert an influence on the carbonation resistance of alkali-activated concretes but, contrary to what has been reported for concretes based on (blended) Portland cements, these are not good indicators of their carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approxi-mating natural carbonation appears to be their w/(CaO + Na2O + K2O) ratio. Furthermore, the analysis points to significant shortcomings of tests at elevated CO2 concentrations for low-Ca alkali-activated concretes, indicating that even at a concentration of 1 % CO2, the outcomes may lead to inaccurate predictions of the carbonation coefficient under natural exposure conditions. T2 - 75th RILEM Annual Week CY - Mérida, Yucatán, Mexico DA - 30.08.2021 KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Testing KW - Concrete PY - 2023 SN - 978-3-031-21734-0 SN - 978-3-031-21735-7 DO - https://doi.org/10.1007/978-3-031-21735-7_72 SN - 2211-0852 SN - 2211-0844 VL - 40 SP - 667 EP - 676 PB - Springer CY - Cham AN - OPUS4-57157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, Shishir A1 - Samson, G. A1 - Masi, G. A1 - Achenbach, R. A1 - Bastidas, D. M. A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Criado, M. A1 - Cyr, M. A1 - Gartner, N. A1 - von Greve-Dierfeld, S. A1 - Legat, A. A1 - Nikoonasab, Ali A1 - Provis, J. L. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Stahlkorrosion in alkalisch aktivierten Bindemitteln und Betonen: Anwendung elektrochemischer Methoden N2 - Alkalisch aktivierte Bindemittel (AAB) und Betone können herkömmliche Zemente beziehungsweise Betone potentiell in vielen Anwendungen ersetzen und dadurch den CO2-Fußabdruck der Bauindustrie wesentlich verkleinern. Zur Untersuchung der Stahlkorrosion in bewehrten („armierten“) Betonbauteilen werden elektrochemische Methoden wie Messungen des Freien Korrosionspotentials, des Polarisationswiderstands oder von Stromdichte-Potential-Kurven eingesetzt. Diese Methoden und die etablierten Grenzwerte zur Detektion von Korrosion sind für die Anwendung bei herkömmlichen Zementen beziehungsweise Betonen entwickelt und erprobt worden. Neue Forschungsergebnisse demonstrieren, dass Unterschiede zwischen den Porenlösungszusammensetzungen von herkömmlichen Zementen und bestimmten AAB sowie anderen schlackehaltigen Zementen erhebliche Unterschiede bei den Ergebnissen der elektrochemischen Messungen bewirken und damit zur fehlerhaften Detektion von Stahlkorrosion führen können. Ursache hierfür sind vor allem reduzierte Schwefelspezies in den Porenlösungen von AAB und anderen schlackehaltigen Zementen. KW - Zement KW - Hüttensandmehl KW - Schlacke KW - Sulfid KW - Korrosion PY - 2023 UR - https://bit.ly/GIT-Gluth UR - https://analyticalscience.wiley.com/content/magazine-do/git-labor-fachzeitschrift-10-2023 SN - 0016-3538 VL - 67 IS - 10 SP - 28 EP - 31 PB - Wiley-VCH AN - OPUS4-58573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, S. A1 - Samson, G. A1 - Masi, G. A1 - Achenbach, R. A1 - Bastidas, D. M. A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Criado, M. A1 - Cyr, M. A1 - Gartner, N. A1 - von Greve-Dierfeld, S. A1 - Legat, A. A1 - Nikoonasab, Ali A1 - Provis, J. L. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Application of electrochemical methods for studying steel corrosion in alkali-activated materials N2 - Alkali-activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11-Task Force ‘Corrosion of steel in alkali-activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag-based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field. KW - Alkali-activated materials KW - Reinforcement corrosion KW - Steel corrrosion KW - Electrochemical methods KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572241 DO - https://doi.org/10.1002/maco.202313743 SN - 1521-4176 VL - 74 IS - 7 SP - 988 EP - 1008 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Weiler, L. A1 - Bernal, S. A. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Valentini, L. A1 - Walkley, B. T1 - Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC N2 - The current understanding of the carbonation and the prediction of the carbonation rate of alkali-activated concretes is complicated inter alia by the wide range of binder chemistries used and testing conditions adopted. To overcome some of the limitations of individual studies and to identify general correlations between mix design parameters and carbonation resistance, the RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66% of the binder) were also included in the database. The analysis indicates that water/CaO ratio and water/binder ratio exert an influence on the carbonation resistance of alkali-activated concretes; however, these parameters are not good indicators of the carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approximating natural carbonation appears to be their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the subscript ‘eq’ indicates an equivalent amount based on molar masses. Nevertheless, this ratio can serve as approximate indicator at best, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the database points to peculiarities of accelerated tests using elevated CO2 concentrations for low-Ca alkali-activated concretes, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of the carbonation resistance under natural exposure conditions. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Accelerated testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560037 DO - https://doi.org/10.1617/s11527-022-02041-4 VL - 55 IS - 8 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-56003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, Shishir A1 - Prentice, D. P. A1 - Bernal, S. A. A1 - Provis, J. L. T1 - Modelling chloride transport in alkali-activated slags N2 - The service-life of steel-reinforced concrete structures is primarily determined by the ability of the concrete cover to resist chloride ingress. With limited literature available on the ingress of chloride into alkali-activated slags (AAS) under service conditions, it is critical that this is described by appropriate models. This paper describes an interactive software framework to relate chloride ingress into AAS with the chemistry of the concrete cover, by considering the chloride binding capacity and porosity of the binder as a function of time, based on thermodynamic calculations of the phase assemblage as a function of slag and activator composition. This provides a major step towards developing the ability to predict the ingress of chlorides in alkali-activated concretes from a sound theoretical basis, which is essential in providing confidence in the durability of these materials in essential infrastructure applications. KW - Thermodynamic calculations KW - Alkali activated cement KW - Durability KW - Diffusion KW - Chloride PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106011 VL - 130 SP - 106011 PB - Elsevier Ltd. AN - OPUS4-50423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winnefeld, F. A1 - Gluth, Gregor A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Carabba, L. A1 - Chithiraputhiran, S. A1 - Dehghan, A. A1 - Dolenec, S. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Yu, J. A1 - Peterson, K. A1 - Stephan, D. A1 - Provis, J. L. T1 - RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes N2 - The RILEM technical committee TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ conducted a round robin testing programme to determine the validity of various durability testing methods, originally developed for Portland cement based-concretes, for the assessment of the durability of alkali-activated concretes. The outcomes of the round robin tests evaluating sulfate resistance, alkali-silica reaction (ASR) and freeze–thaw resistance are presented in this contribution. Five different alkali-activated concretes, based on ground granulated blast furnace slag, fly ash, or metakaolin were investigated. The extent of sulfate damage to concretes based on slag or fly ash seems to be limited when exposed to an Na2SO4 solution. The mixture based on metakaolin showed an excessive, very early expansion, followed by a dimensionally stable period, which cannot be explained at present. In the slag-based concretes, MgSO4 caused more expansion and visual damage than Na2SO4; however, the expansion limits defined in the respective standards were not exceeded. Both the ASTM C1293 and RILEM AAR-3.1 test methods for the determination of ASR expansion appear to give essentially reliable identification of expansion caused by highly reactive aggregates. Alkali-activated materials in combination with an unreactive or potentially expansive aggregate were in no case seen to cause larger expansions; only the aggregates of known very high reactivity were seen to be problematic. The results of freeze–thaw testing (with/without deicing salts) of alkali-activated concretes suggest an important influence of the curing conditions and experimental conditions on the test outcomes, which need to be understood before the tests can be reliably applied and interpreted. KW - Alkali-activated materials KW - Sulfate attack KW - Alkali silica reaction KW - Alkali aggregate reaction KW - Freeze-thaw attack PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515527 DO - https://doi.org/10.1617/s11527-020-01562-0 VL - 53 IS - 6 SP - 140 PB - Springer Nature AN - OPUS4-51552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Arbi, K. A1 - Bernal, S. A. A1 - Bondar, D. A1 - Castel, A. A1 - Chithiraputhiran, S. A1 - Dehghan, A. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Peterson, K. A1 - Pipilikaki, P. A1 - Valcke, S. L. A. A1 - Ye, G. A1 - Zuo, Y. A1 - Provis, J. L. T1 - RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes N2 - Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Chloride penetration KW - Concrete PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504045 DO - https://doi.org/10.1617/s11527-020-1449-3 SN - 1359-5997 SN - 1871-6873 VL - 53 IS - 1 SP - 21 PB - Springer Nature AN - OPUS4-50404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -