TY - CONF A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Weiler, L. A1 - Bernal, S. A. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Valentini, L. A1 - Walkley, B. ED - Jędrzejewska, A. ED - Kanavaris, F. ED - Azenha, M. ED - Benboudjema, F. ED - Schlicke, D. T1 - Carbonation of alkali-activated concretes: effects of compositional parameters and carbonation conditions N2 - The current ability to predict the carbonation resistance of alkali-activated materials (AAMs) is incomplete, partly because of widely varying AAM chemistries and variable testing conditions. To identify general correlations between mix design parameters and the carbonation rate of AAMs, RILEM TC 281-CCC Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥66% of the binder) were also included in the database. The results show that the water/CaO ratio is not a reliable indicator of the carbonation rate of AAMs. A better indicator of the carbonation rate of AAMs under conditions approximating natural carbonation is their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the index ‘eq’ indicates an equivalent amount based on molar masses. This finding can be explained by the CO2 binding capacity of alkaline-earth and alkali metal ions; the obtained correlation also indicates an influence of the space-filling capability of the binding phases of AAMs, as for conventional cements. However, this ratio can serve only as an approximate indicator of carbonation resistance, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the dataset revealed peculiarities of accelerated tests using elevated CO2 concentrations for low-Ca AAMs, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of their carbonation resistance under natural exposure conditions. T2 - International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures: SynerCrete 2023 CY - Adamantas, Greece DA - 14.06.2023 KW - Carbonation KW - Alkali-activated materials KW - Mix design PY - 2023 U6 - https://doi.org/10.1007/978-3-031-33187-9_94 VL - 2 SP - 1029 EP - 1037 PB - Springer CY - Cham AN - OPUS4-57699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -