TY - CONF A1 - Schmidt, Dirk A1 - Ruwe, L. A1 - Heidermann, T. A1 - Kreißig, M. A1 - Kant, Hanjo A1 - Gutte, F. A1 - Bartsch, D. A1 - Bosse, P. A1 - Lucassen, A. A1 - Schmidt, Dirk T1 - Experimental study on the performance of the standardized test method for detonation flame arresters N2 - Flame arresters are autonomous protection systems and are among the constructive explosion protection measures that limit the effects of an explosion. In this study, the performance of the standardized test method regulated in the DIN EN ISO 16852 standard for in-line flame arresters for stable and unstable detonations, which is mainly designed for atmospheric conditions, is examined. In an interlaboratory comparison, experiments are performed for different pressures before ignition and explosion groups according to the standardized test method. The experimental data is analyzed in detail to further optimize the test method and to thus achieve an improved reproducibility of detonation tests at high pressures, especially regarding the deflagration to detonation transition. Based on these results, an improved test method for detonation flame arresters will be developed, which will ensure better reproducibility as well as applicability under non-atmospheric conditions. T2 - 28th ICDERS 2022 CY - Naples, Italy DA - 19.06.2022 KW - Flame arrester KW - Explosion protection KW - Experimental tests PY - 2022 AN - OPUS4-55101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruwe, L. A1 - Schmidt, Dirk A1 - Heidermann, T. A1 - Kreißig, M. A1 - Kant, Hanjo A1 - Gutte, F. A1 - Bartsch, D. A1 - Bosse, P. A1 - Lucassen, A. T1 - Experimental investigation on the performance of the standardized testing method for detonation fl ame arresters N2 - Detonation flame arresters are typically used as protection systems in industrial applications to prevent flame transmission from one section of a plant to another after an incidental ignition. Numerous processes in the chemical and petrochemical industry are taking place under non-atmospheric conditions (e.g., increased pressure and/or temperature) in order to optimize the production capabilities. To verify and examine the suitability of detonation flame arresters, a test method originating from the DIN EN ISO 16852 standard, which is mainly based on findings from experiments under atmospheric conditions, is used. In order to improve the reproducibility of detonation tests at high pressures, especially regarding the deflagration to detonation transition, test methods will be analyzed and improved. The main objective of this study is to develop an improved test method for detonation flame arresters, which offers a higher reproducibility and moreover, an applicability under non-atmospheric conditions. Therefore, an interlaboratory comparison on the performance of in-line flame arresters for stable and unstable detonations is jointly conducted by the project partners (PTB, BAM, Braunschweiger Flammenfilter GmbH and IBExU GmbH). The experiments are performed according to the test method regulated in the DIN EN ISO 16852 standard for different pressures before ignition and different explosion groups. Potential ambiguities of the standardized test method that might lead to the differing results at the different institutes are identified from the interlaboratory comparison. Based on these results, an improved test method for detonation flame arresters will be developed, which will ensure a greater safety at process plants while handling combustibles. T2 - 38th International Symposium on Combustion CY - Online meeting DA - 24.01.2021 KW - DIN EN ISO 16852 KW - Detonation KW - Flame arresters KW - Protection system PY - 2021 AN - OPUS4-52217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruwe, L. A1 - Schmidt, Dirk A1 - Heidermann, T. A1 - Gutte, F. A1 - Lucassen, A. A1 - Bosse, P. T1 - Comparative study on the performance of the standardized test method for detonation flame arrestors N2 - Detonation flame arresters are widely used as protection systems in industrial applications to avoid damage from incidental gas explosions, by preventing the propagation of the ongoing explosion from one section of a plant to another. Numerous processes in the chemical and petrochemical industry are taking place under non-atmospheric conditions (e.g. increased pressure and/or temperature) in order to optimize the production capabilities. The suitability of detonation flame arresters is verified and examined according to the DIN EN ISO 16852 standard, which is only based on findings from experiments under atmospheric conditions. In some instances, differing results are obtained by the different institutes using the current standardized test procedure, especially for instable detonations as well as for detonations at elevated pressures before ignition. The primary objective of this study is to develop an improved test method for detonation flame arresters, which offers a higher reproducibility and moreover, an applicability under non-atmospheric conditions. For this aim, the project partners (PTB, BAM, Braunschweiger Flammenfilter GmbH and IBExU GmbH) jointly conduct an interlaboratory comparison on the performance of in-line flame arresters for stable and instable detonations. The experiments are performed according to the test method regulated in the DIN EN ISO 16852 standard for different pressures before ignition and for different explosion groups (IIA, IIB, IIC). The interlaboratory comparison points out potential ambiguities of the standardized test procedure that might lead to the differing results at the different institutes. Based on these experimental findings, an improved test method for detonation flame arresters will be developed, which will ensure a greater safety at process plants while handling combustible liquids and gases. T2 - 10. ProcessNet-Jahrestagung und 34. DECHEMA-Jahrestagung der Biotechnologen 2020 CY - Online meeting DA - 21.09.2020 KW - Pipes KW - Detonation KW - Flame arrestor PY - 2020 AN - OPUS4-51558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -