TY - JOUR A1 - Pieres, A. A1 - Almeida, Ângela A1 - Correia, J. A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana N2 - The toxicity induced in non-target organisms by pharmaceutical drugs has been the focus of several studies. In the aquatic environment, most of the studies have been devoted to fish and bivalves, while little is known on the impacts induced in polychaetes. The present study evaluated the impacts of carbamazepine and caffeine on the regenerative capacity of Diopatra neapolitana, a polychaete species with high ecological and economic relevance. Under laboratory controlled conditions polychaetes were exposed, during 28 days, to carbamazepine (Ctl-0.0; 0.3; 3.0; 6.0; 9.0 mg/L) and caffeine (Ctl-0.0; 0.5; 3.0; 18.0 mg/L). During the experiment, at days 11, 18, 25, 32, 39 and 46 after amputation, for each specimen, the percentage of the body width regenerated was determined and the number of new segments was counted. The regenerative capacity was assessed considering the number of days needed to achieve full regeneration and the total number of new segments. The obtained results revealed that with the increase of drugs concentrations organisms regenerated less new segments and took longer to completely regenerate. KW - Diopatra neapolitana KW - Pollution KW - Pharmaceutical drugs KW - Regenerative capacity PY - 2016 U6 - https://doi.org/10.1016/j.chemosphere.2015.12.035 SN - 0045-6535 VL - 146 SP - 565 EP - 573 PB - Elsevier AN - OPUS4-38497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freitas, R. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Velez, C. A1 - Moreira, A. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Figueira, E. A1 - Soares, A. M. V. M. T1 - The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana N2 - Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. KW - Ocean acidification KW - Pharmaceuticals KW - Biomarkers KW - Oxidative stress KW - Clams KW - Long-term exposures PY - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.09.138 VL - 541 SP - 977 EP - 985 PB - Elsevier B.V. AN - OPUS4-38502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandez, L. A1 - Esteves, V. I. A1 - Cunha, A. A1 - Schneider, Rudolf A1 - Tome, J. P. C. T1 - Photodegradation of organic pollutants in water by immobilized porphyrins and phthalocyanines N2 - New methods for water treatment are required as a result from an increasing awareness in the reduction of the pollution impact in the environment. In the perspective of the photo-oxidation of organic pollutants present in water, the principal incentive for the preparation of heterogeneous photocatalysts is their easy recovery from the reaction mixture, which allows their reuse in successive runs, minimizing the loss of their original photocatalytic properties. Different types of supports can be used in the immobilization of photoactive species, such as porphyrins (Pors) and phthalocyanines (Pcs). This mini-review will consider the different methodologies for the immobilization of Pors and Pcs and their photocatalytic performance in the photodegradation of organic pollutants in water, addressing also their recycling ability in successive water treatments. KW - Porphyrins KW - Phthalocyanines KW - Water treatment KW - Organic pollutants KW - Advanced oxidation processes KW - Heterogeneous photocatalysis KW - TiO2 KW - Microporous KW - Nanoparticles PY - 2016 U6 - https://doi.org/10.1142/S108842461630007X VL - 2016 IS - 20 SP - 150 EP - 166 PB - World Scientific Publishing AN - OPUS4-38503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina N2 - In the last decade studies have reported the presence of several pharmaceutical drugs in aquatic environments worldwide and an increasing effort has been done to understand the impacts induced on wildlife. Among the most abundant drugs in the environment is caffeine, which has been reported as an effective chemical anthropogenic marker. However, as for the majority of pharmaceuticals, scarce information is available on the adverse effects of caffeine on marine benthic organisms, namely polychaetes which are the most abundant group of organisms in several aquatic ecossystems. Thus, the present study aimed to evaluate the biochemical alterations induced by environmentally relevant concentrations of caffeine on the polychaete species Diopatra neapolitana and Arenicola marina. The results obtained demonstrated that after 28 days exposure oxidative stress was induced in both species, especially noticed in A. marina, resulting from the incapacity of antioxidant and biotransformation enzymes to prevent cells from lipid peroxidation. The present study further revealed that D. neapolitana used glycogen and proteins as energy to develop defense mechanisms while in A. marina these reserves were maintained independently on the exposure concentration, reinforcing the low capacity of this species to fight against oxidative stress. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 U6 - https://doi.org/10.1016/j.envpol.2016.04.031 VL - 2016 IS - 214 SP - 456 EP - 463 PB - Elsevier Ltd. AN - OPUS4-38505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz, D. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers N2 - Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 mg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h. KW - Bivalves KW - Oxidative stress KW - Pharmaceuticals KW - Long-term exposure KW - Environmentally relevant concentrations PY - 2016 U6 - https://doi.org/10.1016/j.chemosphere.2016.06.068 VL - 2016 IS - 160 SP - 95 EP - 103 PB - Elsevier Ltd. AN - OPUS4-38508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine N2 - Several environmental stressors have been identified as key and/or emerging drivers of habitat change that could significantly influence marine near-shore ecosystems. These include increasing discharges of pharmaceutical contaminants into the aquatic coastal systems. Pharmaceutical drugs are often detected in aquatic environments but still information on their toxicity impacts on inhabiting species is scarce, especially when acting in combination. Furthermore, almost no information is available on the impacts of pharmaceuticals in polychaetes, often the most abundant taxon in benthic communities and commonly used as indicator species of environmental conditions. Therefore, the present study aimed to evaluate the biochemical alterations induced in the polychaete Hediste diversicolor, from a low contaminated area at the Ria de Aveiro lagoon (Portugal), by the antiepileptic drug carbamazepine (0.0 - control, 0.3, 3.0, 6.0 and 9.0 μg/L) and the stimulant caffeine (0.0 - control, 0.5, 3.0, and 18.0 μg/L), acting alone and in combination (0.3 CBZ + 0.5 CAF and 6.0 CBZ + 3.0 CAF). Glutathione Stransferases (GSTs), superoxide dismutase (SOD) and catalase (CAT) activities was determined in Hediste diversicolor from each condition. Lipid peroxidation (LPO), glutathione reduced and oxidized (GSH and GSSG), glycogen and electron transport system (ETS) were also measured. The results obtained clearly revealed that both drugs induced oxidative stress in H. diversicolor, shown by the increase on LPO levels and decrease on total glutathione and GSH/GSSG ratio with the increase of exposure concentrations. Furthermore, the present findings demonstrated that polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to fight against the excess of reactive oxygen species (ROS) leading to LPO when organisms were exposed to both drugs. Our results also demonstrated that polychaetes tended to decrease the activity of ETSwhen exposed to drugs, avoiding energy expenditurewhich may prevent them fromgreater damages. The present study further revealed that the impacts induced by the combination of both drugswere similar to those obtained at the highest drugs concentrations acting alone. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 U6 - https://doi.org/10.1016/j.cbpc.2016.06.003 VL - 2016 IS - 188 SP - 30 EP - 38 PB - Elsevier Inc. AN - OPUS4-38509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, L. A1 - Lin, Z. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Cunha, Â. A1 - Tomé, J. P. C. T1 - Antimicrobial Photodynamic Activity of Cationic Nanoparticles Decorated with Glycosylated Photosensitizers for Water Disinfection N2 - The antimicrobial photodynamic approach has been demonstrated as an efficient and sustainable process for the eradication of microbial pathogens. In this work, silica-coated Magnetite nanoparticles (NPs) were used as carriers of glycosylated porphyrins and phthalocyanines. Their subsequent cationization resulted in the production of stable antimicrobial photosensitizing materials, effective against E. coli. Suspensions of the photocatalysts in water present bimodal size distributions formed by big clusters and small NPs with hydrodynamic diameters between 8 and 38 nm. The presence of small NPs in the suspensions is related to an effective photodynamic inactivation (PDI) of E. coli cells. Glycosylation of the PS showed a positive effect on the PDI performance, which could be related to a higher accumulation of the photocatalyst over the bacterial cell membrane. In addition, these biocidal agents proved to be photostable and their photoactive performance decreased only between 23% and 28% upon 5 PDI cycles, mostly because of the loss of material between cycles, which makes them promising materials for water disinfection purposes. KW - Photodynamische Inaktivierung KW - E. coli KW - Photokatalyse KW - Bakterien KW - Nanopartikel KW - Photosensibilisator KW - Porphyrin KW - Phthalocyanin PY - 2018 U6 - https://doi.org/10.1002/cptc.201700169 SN - 2367-0932 VL - 2 IS - 7 SP - 596 EP - 605 PB - Wiley VHC CY - Weinheim AN - OPUS4-45684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Teixiera, M. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis N2 - Recent studies have become increasingly focused on the assessment of pharmaceuticals occurrence in aquatic ecosystems, however the potential toxicity to non-target organisms is still largely unknown. The antihistamine cetirizine is a commonly used pharmaceutical, already detected in surface waters of marine aquatic systems worldwide. In the present study Mytilus galloprovincialis mussels were exposed to a range of cetirizine concentrations (0.3, 3.0, 6.0 and 12.0 mu/L), resembling moderate to highly contaminated areas, over 28 days. The responses of different biochemical markers were evaluated in mussels whole soft tissue, and included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), and oxidative stress markers (superoxide dismutase activity, SOD; catalase activity, CAT; glutathione S-transferases activity, GSTs; lipid peroxidation levels, LPO; reduced (GSH) and oxidized (GSSG) glutathione content). The results obtained demonstrated that with the increase of exposure concentrations mussels tended to increase their energy reserves and maintain their metabolic potential, which was significantly higher only at the highest concentration. Our findings clearly revealed that cetirizine inhibited the activity of GSTs and although induced the activity of antioxidant enzymes (SOD and CAT) mussels were not able to prevent cellular damages observed through the increase of LPO associated to the increase of exposure concentrations. Thus, this study confirmed that cetirizine induces toxic effects in Mytilus galloprovincialis, which, considering their trophic relevance, wide use as bioindicator and wide spatial distribution of this species, can result in ecological and economic negative impacts at a large scale. KW - Bivalves KW - Biomarkers KW - Oxidative Stress PY - 2017 U6 - https://doi.org/10.1016/j.watres.2017.02.032 SN - 0043-1354 VL - 114 SP - 316 EP - 326 AN - OPUS4-43302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Oliveira, P. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine N2 - The bivalve Mytilus galloprovincialis collected in the Ria de Aveiro, was selected to evaluate the acute and chronic effects of carbamazepine (CBZ) at environmentally relevant concentrations. CBZ is an antiepileptic drug widely found in the aquatic environment with toxic effects to inhabiting organisms. However, few studies evaluated the acute and chronic toxicity of this drug. The experiment was performed 'by exposing mussels to 0.0, 0.3, 3.0, 6.0 and 9.0 CBZ mu g/L, for 96 h and 28 days. To assess the toxicity of the drug, a battery of biomarkers related to mussels general physiological health status and oxidative stress was applied. CBZ was quantified in mussel tissues by an Enzyme-Linked Immunosorbent Assay (ELISA). The results obtained show that CBZ did not induce oxidative stress. However, our findings,demonstrated that the drug was taken up by mussels even though presenting low bioconcentration factor (BCF) values (up to 2.2). Furthermore, our results demonstrated that after a chronic exposure the physiological parameters, namely the condition and gonadosomatic indices, were negatively affected which may impair organisms' reproductive capacity with consequences to population sustainability. KW - Pharmaceuticals KW - Bivalves KW - Oxidative Stress PY - 2017 U6 - https://doi.org/10.1016/j.watres.2017.03.052 SN - 0043-1354 VL - 117 SP - 102 EP - 114 PB - Elsevier Ltd. AN - OPUS4-43304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Fernandez, L. A1 - Borzecka, W. A1 - Lin, Z. A1 - Huvaere, K. A1 - Esteves, V. I. A1 - Cunha, A. A1 - Tome, J. P. C. T1 - Nanomagnet-photosensitizer hybrid materials for the degradation of 17 beta-estradiol in batch and flow modes N2 - The preparation of porphyrins and phthalocyanines covalently attached onto nanostructured magnetic supports consisting of magnetite nanoparticles coated with an amorphous silica shell is reported. The easy recovery of these heterogeneous photocatalysts, just by applying an external magnetic field, allows their reuse in multiple treatment cycles. The photocatalytic activity of the non-immobilized photosensitizers and the obtained hybrid materials was evaluated in the degradation of 17 beta-estradiol, as a model organic pollutant present in water, using batch and flow mode treatment systems, assisted by visible light radiation (4 mW cm(-2)). The flow mode system potentiated the photocatalytic capacity of these novel hybrid materials. In order to improve the process, further studies based on different photocatalyst concentration and pH conditions were performed. Reuse capacity of these materials was investigated upon three photocatalytic cycles. KW - Photodegradation KW - 17 beta-Estradiol KW - Porphyrin PY - 2017 U6 - https://doi.org/10.1016/j.dyepig.2017.04.010 SN - 0143-7208 VL - 142 SP - 535 EP - 543 PB - Elsevier Ltd. AN - OPUS4-43308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -