TY - CONF A1 - Thöns, S. A1 - Schneider, Ronald A1 - Faber, M.H. ED - Haukaas, T. T1 - Quantification of the value of structural health monitoring information for fatigue deteriorating structural systems N2 - This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM and is quantified with this framework. The approach is focused on fatigue deteriorating structural steel systems for which a continuous resistance deterioration formulation is introduced. In a case study, the value of SHM for load monitoring is calculated for a Daniels system subjected to fatigue deterioration. The influence of and the value of SHM in regard to the structural system risks and the integrity management is explicated and explained. The results are pointing to the importance of the consideration of the structural system risks for the quantification of the value of SHM. T2 - ICASP 12 - 12th International conference on applications of statistics and probability in civil engineering CY - Vancouver, Canada DA - 12.07.2015 PY - 2015 DO - https://doi.org/10.14288/1.0076284 SP - Paper 605, 1 EP - 8 AN - OPUS4-34332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Pitters, S. A1 - Wedel, F. A1 - Hindersmann, I. T1 - Developing a guideline for structural health monitoring of road bridges in Germany N2 - In recent years, Structural Health Monitoring (SHM) has become a useful and increasingly widely used tool for supporting lifetime extensions of existing bridges with known structural deficiencies or indications of potentially critical damages or damage processes. At the same time, methods and tools are emerging, which enable monitoring-informed predictive maintenance of new and existing bridges based on digital twins. The monitoring process – starting from the definition of monitoring actions and ending with decisions based on monitoring outcomes – is complex and requires expertise in structural engineering, operation and maintenance of bridges, metrology, and data analytics. To support German road authorities, engineering consultancies, building contractors and other stakeholders of the bridge management, the Federal Highway Research Institute (BASt) has initiated the development of a new guideline for applying SHM as part of the management of road bridges. The guideline will present various use cases and for each identified use case, it will propose a proven monitoring scheme. In addition, the guideline will provide guidance on assessing the benefits of SHM as well as a common approach to managing monitoring data as a systematic basis for integrating monitoring data in the bridge management. This contribution discusses the motivation, objectives, and scope of the guideline, describes its use case centric structure and outlines the proposed data management. T2 - IABMAS 2024 CY - Kopenhagen, Danmark DA - 24.06.2024 KW - Guideline KW - Structural health monitoring KW - Road bridges KW - Infrastructure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613947 SN - 978-1-032-77040-6 DO - https://doi.org/10.1201/9781003483755-236 SP - 2009 EP - 2017 PB - CRC Press AN - OPUS4-61394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Pitters, S. A1 - Hindersmann, I. A1 - Schneider, Ronald A1 - Wedel, F. ED - Rogge, Andreas ED - Meng, Birgit T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrü-cken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monito-ring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfeh-lungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirt-schaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Leitfaden KW - Monitoring KW - Straßenbrücke PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612931 SN - 978-3-9818564-7-7 SP - 186 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zorn, Sebastian A1 - Unger, Jörg F. A1 - Schneider, Ronald ED - Silva Gomes, J. F. ED - Meguid, S. A. T1 - A probabilistic method for identification of vehicle loads and system parameters for reinforced concrete bridges N2 - Growth of vehicle traffic density can be observed in many countries all over the world. This accretion is caused by world-wide population growth on the one hand, but also by increasing freight volumes and, thus, freight transports on the streets on the other hand. This increased exposure becomes more and more of a problem for the civil infrastructure such as bridges. Many of these bridges are nowadays stressed to their limits by higher loads than they were originally designed for and/or operating times beyond the initially predicted life span. This raises questions about structural safety and lifetime prediction, of course, and therefore illustrates the need for accurate structural monitoring. Since the lifetime of bridge structures is primarily influenced by their traffic loading, an accurate identification of load configurations over the whole length of a structure is most desirable. In this paper, a method for vehicle load identification is proposed. It involves Bayesian Analysis and (quasi-)static importance functions in order to estimate vehicle positions, velocities and weights. The structure is modeled with finite elements in order to generate model predictions for different load configurations. The model predictions are compared to the actual measured data to identify the most probable loading configuration for that measurement. This involves the use of enhanced Monte Carlo simulations such as MCMC to reduce the computational effort. The measured data from different kinds of sensors can (and should) be combined for accuracy gain – in this case a combination of measured displacements and inclinations. Since the measurements take place over some time during the passage of the vehicle, these estimations are carried out for several time instants for which the estimation is carried out. The advantage of using Bayesian Updating Method is the embodied learning effect leading to an improvement of the estimation when adding new information in a new calculation step. Using the estimates for the loading conditions of a bridge structure as well as measurements of the structural responses, Bayesian analysis is again used in order to estimate localized structural parameters such as Young's modulus or Moments of Inertia in form of probability density functions yielding most probable values for the parameters. Considering the difficulties for load identification close to the support poles of the bridge and therefore for the proposed structural parameter identification procedure, it is clear that this problem is ill posed. Bayesian regularization methods also have proven to be very effective when handling ill posed problems. T2 - IRF2016 - Integrity Reliability Failure CY - Porto, Portugal DA - 24.07.2016 KW - Vehicle load identification KW - Structural health monitoring KW - Bayesian updating method PY - 2016 SN - 978-989-98832-4-6 VL - 2016 SP - PAPER REF: 6294-575 EP - 576 PB - INEGI-Instituto de Ciencia e Inovacao em Engenharia Mecanica e Gestao Industrial CY - Porto - Portugal AN - OPUS4-39833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, S. A1 - Fischer, J. A1 - Bügler, M. A1 - Borrmann, A. A1 - Straub, D. T1 - A software prototype for assessing the reliability of a concrete bridge superstructure subjected to chloride-induced reinforcement corrosion N2 - A software prototype is developed for assessing and updating the reliability of single-cell prestressed concrete box girders subjected to chloride-induced reinforcement corrosion. The underlying system model consists of two integrated sub-models: a condition model for predicting the deterioration state of the box girder and a structural model for evaluating the overall system reliability. The condition model is based on a dynamic Bayesian network (DBN) model which considers the spatial variation of the corrosion process. Inspection data are included in the calculation of the system reliability through Bayesian updating on the basis of the DBN model. To demonstrate the effect of partial inspections, the software prototype is applied to a case study of a typical highway bridge with six spans. The case study illustrates that it is possible to infer the condition of uninspected parts of the structure due to the spatial correlation of the corrosion process. T2 - IALCCE 2014 - 4th International symposium on life-cycle civil engineering CY - Tokyo, Japan DA - 16.11.2014 PY - 2015 SN - 978-1-138-00120-6 SP - 846 EP - 853 PB - Taylor & Francis CY - London AN - OPUS4-32220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 SN - 978-1-032-35623-5 SN - 978-1-003-32264-1 DO - https://doi.org/10.1201/9781003322641-127 SP - 1061 EP - 1068 PB - CRC Press CY - Boca Raton AN - OPUS4-55493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Probabilistische Systemidentifikation einer Versuchsstruktur für Substrukturen von Offshore-Windenergieanlagen mit statischen und dynamischen Messdaten N2 - In diesem Beitrag wird ein probabilistischer Ansatz zur Systemidentifikation für Tragstrukturen von Offshore-Windkraftanlagen vorgestellt. Der Schwerpunkt der Forschung liegt auf der Integration von globalen Systemantworten in Form von Eigenfrequenzen und -formen sowie Verschiebungen und Dehnungen als lokale Messdaten. Die unterschiedlichen Daten werden kombiniert für die Aktualisierung der Parameter eines Finite-Elemente-Modells genutzt. Zu diesem Zweck wird ein probabilistischer Ansatz nach Bayes verfolgt, um Vorwissen sowie Unsicherheiten einzubeziehen. Die Methodik wird bei einer Versuchsstruktur angewandt, die eine Jacket-Substruktur von Offshore-Windenergieanlagen nachbildet. Eine Systemidentifikation mit Hilfe von Überwachungsdaten ist wertvoll für Jacket-Substrukturen, da eine Zustandsanalyse für die Gewährleistung der strukturellen Integrität unerlässlich ist, aber hinsichtlich der schwierigen Offshore-Bedingungen möglichst effizient sein muss. In diesem Zusammenhang schafft diese Arbeit die Grundlage für eine Schadenserkennung, eine verbesserte Vorhersage der Ermüdungslebensdauer und optimierte Instandhaltungsstrategien. Während das Modell hinsichtlich der statischen Messdaten erfolgreich aktualisiert werden kann, sind Schwierigkeiten bei der Identifizierung der dynamischen Systemeigenschaften erkennbar. T2 - 8. VDI-Fachtagung Baudynamik 2025 CY - Würzburg, Germany DA - 02.04.2025 KW - Systemidentifikation KW - Versuchsstruktur KW - Jacket KW - Offshore-Windenergie PY - 2025 VL - 8 SP - 175 EP - 188 AN - OPUS4-62879 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Ebell, Gino A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Schneider, Ronald ED - Lienhart, Werner ED - Krüger, Markus T1 - On potentials and challenges of physics-informed SHM for civil engineering structures N2 - Physics-informed structural health monitoring, which integrates realistic physical models of material behavior, structural response, damage mechanisms, and aging processes, offers a promising approach to improve monitoring capabilities and inform operation and maintenance planning. However, the associated technical challenges and model requirements are context-specific and vary widely across applications. To illustrate the relevance and potential of the topic, two application examples are presented. The first focuses on monitoring the modal characteristics of a prestressed road bridge, where strong sensitivity to temperature variations limits the diagnostic capabilities of conventional vibration-based global monitoring. The discussion highlights how environmental influences can obscure structural changes, and emphasizes that purely data-based approaches are inherently limited to detecting anomalies and do not enable comprehensive condition diagnostics. The second example explores a physics-informed monitoring approach for prestressed concrete bridges affected by hydrogen-induced stress corrosion cracking. T2 - SHMII-13 CY - Graz, Austria DA - 01.09.2025 KW - Hydrogen Stress Corrosion Cracking KW - SHM KW - Physics informed PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643271 SN - 978-3-99161-057-1 DO - https://doi.org/10.3217/978-3-99161-057-1-039 SP - 245 EP - 251 PB - Verlag der Technischen Universität Graz CY - Graz, Austria AN - OPUS4-64327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -