TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Rücker, Werner A1 - Straub, D. ED - Deodatis, G. ED - Ellingwood, B.R. ED - Frangopol, D.M. T1 - Effect of different inspections strategies on the reliability of Daniels systems subjected to fatigue N2 - Inspections are an efficient means of enhancing the reliability of redundant structural Systems subjected to fatigue. To investigate the effect of such inspections, we represent the deterioration state of a Daniels System by means of a probabilistic fatigue crack growth model of all elements, which considers stochastic dependence among element fatigue behavior. We include inspection results in the calculation of the System collapse probability through Bayesian updating of the System deterioration state. Based on this approach, we calculate the collapse probability of a deteriorating Daniels System conditional on different inspection strategies in terms of inspection coverage and inspection times. The acceptability of an inspection strategy is verified by comparing the calculated collapse probabilities with maximum acceptable System failure probabilities. This study is a Step towards identifying optimal inspection strategies for redundant structural Systems subjected to fatigue. T2 - 11th International conference on structural safety and reliability - Safety, reliability, risk and life-cycle performance of structures and infrastructures CY - New York, USA DA - 16.06.2013 PY - 2013 SN - 978-1-138-00086-5 SN - 978-1-315-88488-2 SP - 1 EP - 8 PB - CRC Press CY - Leiden, The Netherlands AN - OPUS4-28984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Straub, D. ED - Strauss, A. ED - Frangopol, D.M. ED - Bergmeister, K. T1 - Probalistic fatigue crack growth modeling for reliability-based inspection planning N2 - The fatigue deterioration modeling for welded steel structures subjected to high cycle fatigue is presented in the current document. The aim of this paper is to formulate approaches based on actual Research results for the phases fatigue crack initiation, fatigue propagation and fatigue failure. The physical characteristics of the approaches are discussed in combination with the associated uncertainties and the probabilistic modeling of this time variant reliability problem. The fatigue deterioration modeling documented here serve as a basis for a reliability-based approach to inspection planning. T2 - 3rd International symposium on life-cycle civil engineering CY - Vienna, Austria DA - 03.10.2012 PY - 2012 SN - 978-0-415-62126-7 SP - 319 EP - 326 PB - CRC Press AN - OPUS4-27067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Straub, D. ED - Strauss, A. ED - Frangopol, D.M. ED - Bergmeister, K. T1 - Reliability-based inspection planning with application to orthotropic bridge deck structures subjected to fatigue N2 - A reliability-based approach to inspection planning for welded steel structures subjected to high cycle fatigue is presented in the current document. Inspections are an effective means to control the Progress of fatigue deterioration and the presented approach allows to determine the minimum required inspection effort so that the considered structure complies with the given risk acceptance criteria in terms of target reliability throughout its service life. T2 - 3rd International symposium on life-cycle civil engineering CY - Vienna, Austria DA - 03.10.2012 PY - 2012 SN - 978-0-415-62126-7 SP - 311 EP - 318 PB - CRC Press AN - OPUS4-27068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 U6 - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 U6 - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kinne, Marko A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements N2 - Support structures of offshore wind turbines are subject to cyclic stresses generated by different time-variant random loadings such as wind, waves, and currents in combinationwith the excitation by the rotor. In the design phase, the cyclic demand on wind turbine support structure is calculated and forecasted with semi or fully probabilistic engineering models. In some cases, additional cyclic stresses may be induced by construction deviations, unbalanced rotor masses and structural dynamic phenomena such as, for example, the Sommerfeld effect. Both, the significant uncertainties in the design and a validation of absence of unforeseen adverse dynamic phenomena necessitate the employment of measurement Systems on the support structures. The quality of the measurements of the cyclic demand on the support structures depends on (a) the precision of the measurement System consisting of sensors, amplifier and data normalization and (b) algorithms for analyzing and converting data to structural health information. This paper presents the probabilistic modelling and analysis of uncertainties in strain measurements performed for the purposes of reconstructing stress resultants in wind turbine towers. It is shown how the uncertainties in the strain measurements affect the uncertainty in the individual components of the reconstructed forces and moments. The analysis identifies the components of the vector of stress resultants that can be reconstructed with sufficient precision. T2 - International Conference on Uncertainty in Mechanical Engineering - ICUME CY - Online meeting DA - 07.06.2021 KW - Reconstruction of stress resultants KW - Strain measurements KW - Bayesian updating of measurement uncertainties PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527987 SP - 224 EP - 235 PB - Springer AN - OPUS4-52798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 SN - 978-1-032-35623-5 SN - 978-1-003-32264-1 U6 - https://doi.org/10.1201/9781003322641-127 SP - 1061 EP - 1068 PB - CRC Press CY - Boca Raton AN - OPUS4-55493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 U6 - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, S. A1 - Fischer, J. A1 - Bügler, M. A1 - Borrmann, A. A1 - Straub, D. T1 - A software prototype for assessing the reliability of a concrete bridge superstructure subjected to chloride-induced reinforcement corrosion N2 - A software prototype is developed for assessing and updating the reliability of single-cell prestressed concrete box girders subjected to chloride-induced reinforcement corrosion. The underlying system model consists of two integrated sub-models: a condition model for predicting the deterioration state of the box girder and a structural model for evaluating the overall system reliability. The condition model is based on a dynamic Bayesian network (DBN) model which considers the spatial variation of the corrosion process. Inspection data are included in the calculation of the system reliability through Bayesian updating on the basis of the DBN model. To demonstrate the effect of partial inspections, the software prototype is applied to a case study of a typical highway bridge with six spans. The case study illustrates that it is possible to infer the condition of uninspected parts of the structure due to the spatial correlation of the corrosion process. T2 - IALCCE 2014 - 4th International symposium on life-cycle civil engineering CY - Tokyo, Japan DA - 16.11.2014 PY - 2015 SN - 978-1-138-00120-6 SP - 846 EP - 853 PB - Taylor & Francis CY - London AN - OPUS4-32220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, S. A1 - Schneider, Ronald A1 - Faber, M.H. ED - Haukaas, T. T1 - Quantification of the value of structural health monitoring information for fatigue deteriorating structural systems N2 - This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM and is quantified with this framework. The approach is focused on fatigue deteriorating structural steel systems for which a continuous resistance deterioration formulation is introduced. In a case study, the value of SHM for load monitoring is calculated for a Daniels system subjected to fatigue deterioration. The influence of and the value of SHM in regard to the structural system risks and the integrity management is explicated and explained. The results are pointing to the importance of the consideration of the structural system risks for the quantification of the value of SHM. T2 - ICASP 12 - 12th International conference on applications of statistics and probability in civil engineering CY - Vancouver, Canada DA - 12.07.2015 PY - 2015 U6 - https://doi.org/10.14288/1.0076284 SP - Paper 605, 1 EP - 8 AN - OPUS4-34332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Effect of repair models on risk based optimal inspection strategies for support structures of offshore wind turbines N2 - Owners or operators of offshore wind farms perform inspections to collect information on the condition of the wind turbine support structures and perform repairs if required. These activities are costly and should be optimized. Risk-based methods can be applied to identify inspection and repair strategies that ensure an optimal balance between the expected total service life cost of inspection and repair, and the achieved risk reduction. Such an optimization requires explicit modeling of repairs. In this paper, the impact of different repair models on the results of a risk-based optimization of inspection and repair strategies is quantified in a numerical example considering a jacket-type steel frame subject to high-cycle fatigue. The example showed that, in this specific application, there is no need for detailed modeling of the behavior of repaired welded connections. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Risk KW - Reliability KW - Inspection planning KW - Offshore wind turbines PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488297 UR - https://www.smar2019.org/Portals/smar2019/bb/Th.2.A.4.pdf SP - Paper Th.2.A.4, 1 EP - 8 AN - OPUS4-48829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zorn, Sebastian A1 - Unger, Jörg F. A1 - Schneider, Ronald ED - Silva Gomes, J. F. ED - Meguid, S. A. T1 - A probabilistic method for identification of vehicle loads and system parameters for reinforced concrete bridges N2 - Growth of vehicle traffic density can be observed in many countries all over the world. This accretion is caused by world-wide population growth on the one hand, but also by increasing freight volumes and, thus, freight transports on the streets on the other hand. This increased exposure becomes more and more of a problem for the civil infrastructure such as bridges. Many of these bridges are nowadays stressed to their limits by higher loads than they were originally designed for and/or operating times beyond the initially predicted life span. This raises questions about structural safety and lifetime prediction, of course, and therefore illustrates the need for accurate structural monitoring. Since the lifetime of bridge structures is primarily influenced by their traffic loading, an accurate identification of load configurations over the whole length of a structure is most desirable. In this paper, a method for vehicle load identification is proposed. It involves Bayesian Analysis and (quasi-)static importance functions in order to estimate vehicle positions, velocities and weights. The structure is modeled with finite elements in order to generate model predictions for different load configurations. The model predictions are compared to the actual measured data to identify the most probable loading configuration for that measurement. This involves the use of enhanced Monte Carlo simulations such as MCMC to reduce the computational effort. The measured data from different kinds of sensors can (and should) be combined for accuracy gain – in this case a combination of measured displacements and inclinations. Since the measurements take place over some time during the passage of the vehicle, these estimations are carried out for several time instants for which the estimation is carried out. The advantage of using Bayesian Updating Method is the embodied learning effect leading to an improvement of the estimation when adding new information in a new calculation step. Using the estimates for the loading conditions of a bridge structure as well as measurements of the structural responses, Bayesian analysis is again used in order to estimate localized structural parameters such as Young's modulus or Moments of Inertia in form of probability density functions yielding most probable values for the parameters. Considering the difficulties for load identification close to the support poles of the bridge and therefore for the proposed structural parameter identification procedure, it is clear that this problem is ill posed. Bayesian regularization methods also have proven to be very effective when handling ill posed problems. T2 - IRF2016 - Integrity Reliability Failure CY - Porto, Portugal DA - 24.07.2016 KW - Vehicle load identification KW - Structural health monitoring KW - Bayesian updating method PY - 2016 SN - 978-989-98832-4-6 VL - 2016 SP - PAPER REF: 6294-575 EP - 576 PB - INEGI-Instituto de Ciencia e Inovacao em Engenharia Mecanica e Gestao Industrial CY - Porto - Portugal AN - OPUS4-39833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Rogge, Andreas A1 - Thöns, S. A1 - Bismut, E. A1 - Straub, D. ED - Caspeele, Robby ED - Taerwe, Luc ED - Frangopol, Dan M. T1 - A sampling-based approach to identifying optimal inspection and repair strategies for offshore jacket structures N2 - Identifying optimal inspection and repair strategies for offshore jacket structures is a challenging task. We pre-sent an approach, which is based on recent developments in the field of risk-based operation and maintenance planning at the structural system level. The approach utilizes heuristics to define inspection and repair strate-gies at the system level and to reduce the search space of possible strategies. For each defined strategy, the expected service life cost of inspection, repair and failure is evaluated based on simulated inspection and re-pair histories. Subset simulation is applied to compute the conditional repair and failure probabilities required for this analysis. It also forms the basis for simulating inspection and repair histories. The strategy that mini-mizes the expected service life cost is the optimal one in the set of pre-selected strategies. The underlying condition and performance model accounts for the stochastic dependence among the deterioration states of the different structural elements and the structural redundancy. The approach is demonstrated in a case study considering a jacket-type frame. In this study, we essentially vary the inspection interval, the minimum num-ber of inspected components and the target reliability, and identify the combination that minimizes the ex-pected total service life cost. T2 - The sixth international symposium on life-cycle civil engineering (IALCCE 2018) CY - Ghent, Belgien DA - 28.10.2018 KW - Offshore steel structures KW - Fatigue KW - Reliability KW - Risk KW - Inspection planning PY - 2019 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 1081 EP - 1088 PB - Taylor & Francis Group CY - London AN - OPUS4-46434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Rogge, Andreas ED - Bucher, Christian ED - Ellingwood, Bruce R. ED - Frangopol, Dan M. T1 - Simulating the service life performance of an inspected group of jacket-type structures N2 - A novel method for risk-based optimization of inspection and repair strategies for deteriorating structural systems has recently been proposed. The method defines heuristics at the system level to reduce the number of possible strategies. For each defined strategy, it computes the updated system failure probability conditional on simulated inspection and repair histories, and evaluates the associated costs and risk. The expected total service life costs and risk for a strategy are finally determined using Monte Carlo simulation. The optimal strategy minimizes the expected total service life costs and risk. We intend to adopt this approach to optimize inspection, monitoring and repair activities for offshore wind park support structures. As a first step, we simulate – in analogy to an offshore wind park – the service life performance of an inspected group of jacket-type frames. The performance is quantified in terms of the group’s system failure probability conditional on simulated inspection and repair histories. The underlying system model accounts for the structural redundancy of the frames and the interdependence among their failure events due to similar loading conditions. The model also captures stochastic dependence among the deterioration states of the frames. As part of the simulation process the a-priori unknown outcome of any planned inspection is generated conditional on the outcome of all previous inspections. T2 - 12th International Conference on Structural Safety and Reliability CY - Vienna, Austria DA - 06.08.2017 KW - Reliability KW - Fatigue KW - Inspection KW - Service life performance KW - Inspection planning PY - 2017 SN - 978-3-903024-28-1 SP - 2738 EP - 2747 PB - TU-MV Media Verlag GmbH CY - Vienna, Austria AN - OPUS4-41344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kinne, Marko A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Influence of the structural integrity management on the levelized cost of energy of offshore wind: a parametric sensitivity analysis N2 - The levelized cost of energy (LCoE) is an important measure to quantify the macro-economic efficiency of an offshore wind farm and to enable a quantitative comparison with other types of energy production. The costs of the structural integrity management - which is required to ensure an adequate lifetime reliability of the turbine support structures - are part of the operational expenditures of an offshore wind farm. An optimization of the structural integrity management may reduce the operational expenditures and consequently the LCoE. However, the effect of the structural integrity management on the LCoE is hardly known. To investigate this effect, this paper presents a sensitivity analysis of the LCoE of a generic offshore wind farm. The probabilistic models of the parameters influencing the LCoE are based on a literature study including an explicit model for the structural integrity management. The analysis reveals that LCoE may potentially be reduced if an optimization of the structural integrity management enables a service life extension. T2 - International Probabilistic Workshop 2022 CY - Stellenbosch, South Africa DA - 08.09.2022 KW - Structural integrity management KW - Levelized cost of energy KW - Sensitivity analysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572724 VL - 36 SP - 90 EP - 98 PB - Acta Polytechnica CTU Proceedings AN - OPUS4-57272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -