TY - CONF A1 - Thöns, S. A1 - Schneider, Ronald A1 - Faber, M.H. ED - Haukaas, T. T1 - Quantification of the value of structural health monitoring information for fatigue deteriorating structural systems N2 - This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM and is quantified with this framework. The approach is focused on fatigue deteriorating structural steel systems for which a continuous resistance deterioration formulation is introduced. In a case study, the value of SHM for load monitoring is calculated for a Daniels system subjected to fatigue deterioration. The influence of and the value of SHM in regard to the structural system risks and the integrity management is explicated and explained. The results are pointing to the importance of the consideration of the structural system risks for the quantification of the value of SHM. T2 - ICASP 12 - 12th International conference on applications of statistics and probability in civil engineering CY - Vancouver, Canada DA - 12.07.2015 PY - 2015 DO - https://doi.org/10.14288/1.0076284 SP - Paper 605, 1 EP - 8 AN - OPUS4-34332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Fischer, J. A1 - Bügler, M. A1 - Nowak, M. A1 - Thöns, S. A1 - Borrmann, A. A1 - Straub, D. T1 - Assessing and updating the reliability of concrete bridges subjected to spatial deterioration - principles and software implementation N2 - Inspection and maintenance of concrete bridges is a major cost factor in transportation infrastructure, and there is significant potential for using information gained during inspection to update predictive models of the performance and reliability of such structures. In this context, this paper presents an approach for assessing and updating the reliability of prestressed concrete bridges subjected to chloride-induced reinforcement corrosion. The system deterioration state is determined based on a Dynamic Bayesian Network (DBN) model that considers the spatial variability of the corrosion process. The overall system reliability is computed by means of a probabilistic structural model coupled with the deterioration model. Inspection data are included in the system reliability calculation through Bayesian updating on the basis of the DBN model. As proof of concept, a software prototype is developed to implement the method presented here. The software prototype is applied to a typical highway bridge and the influence of inspection information on the system deterioration state and the structural reliability is quantified taking into account the spatial correlation of the corrosion process. This work is a step towards developing a software tool that can be used by engineering practitioners to perform reliability assessments of ageing concrete bridges and update their reliability with inspection and monitoring data. KW - Structural reliability KW - Dynamic Bayesian Networks KW - Spatial deterioration KW - Inspection KW - Monitoring general KW - Analysis and design methods KW - Reinforcement KW - Corrosion KW - Prestressed concrete PY - 2015 DO - https://doi.org/10.1002/suco.201500014 SN - 1464-4177 VL - 16 IS - 3 SP - 356 EP - 365 PB - Ernst & Sohn CY - Berlin AN - OPUS4-34336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schneider, Ronald A1 - Fischer, J. A1 - Straub, D. A1 - Thöns, S. A1 - Bügler, M. A1 - Borrmann, A. T1 - Intelligente Bauwerke - Prototyp zur Ermittlung der Schadens- und Zustandsentwicklung für Elemente des Brückenmodells N2 - Dieser Bericht beschreibt ein Systemmodell für eine integrale Ermittlung und Prognose der Schadens- und Zustandsentwicklung der Elemente eines Brückensystems unter Berücksichtigung von Ergebnissen aus Inspektionen und Überwachung. Das Systemmodell wurde anhand eines ausgesuchten Spannbetonüberbaus in einzelliger Kastenbauweise entwickelt. Es besteht aus zwei integralen Teilmodellen: ein Modell zur Beschreibung des Systemschädigungszustandes und ein Modell zur Beschreibung der Standsicherheit. Für die Modellierung des stochastischen Systemschädigungszustandes eines Brückensystems werden dynamische Bayes'sche Netze (DBN) vorgeschlagen. Dieser Ansatz ermöglicht es, alle relevanten Schädigungsprozesse und deren stochastische Abhängigkeiten zu berücksichtigen. Ein wesentlicher Vorteil dieses Ansatzes ist es, dass DBN ideal dafür geeignet sind, Bayes'sche Aktualisierungen auf Grundlage von Informationen aus Inspektionen und Überwachungsmaßnahme auf eine effiziente und robuste Art und Weise durchzuführen. Der DBN-Ansatz ist deshalb für die Entwicklung von Software für das Erhaltungsmanagement von alternden Brückenbauwerken, die vom Benutzer keine vertieften Kenntnisse der Zuverlässigkeitstheorie verlangt, ideal geeignet. Für die Modellierung der Standsicherheit eines alternden Kastenträgers wird vereinfachend Biegeversagen des globalen Längssystems betrachtet. Zur Berechnung der maximalen Traglast eines Kastenträgers infolge des Systemschädigungszustandes wird ein plastisch-plastisches Verfahren eingesetzt, wobei die Beanspruchungen mittels der Fließgelenktheorie unter Ausnutzung der plastischen Beanspruchbarkeit der Querschnitte des Kastenträgers ermittelt werden. Ein Kastenträger versagt, wenn sich durch die Ausbildung einer ausreichend großen Anzahl von Fließgelenken eine kinematische Kette ausbildet. Dieser Modellierungsansatz berücksichtigt Redundanzen, die sich aus der plastischen Beanspruchbarkeit der Querschnitte und der statischen Unbestimmtheit eines Kastenträgers ergeben. Zum Nachweis der praktischen Einsetzbarkeit des entwickelten Systemmodells wurde ein Software-Prototyp entwickelt, der eine intuitiv benutzbare graphische Benutzeroberfläche (Front-End) mit einem Berechnungskern (Back-End) koppelt. Die aktuelle Version des Software-Prototyps implementiert ein Modell der chloridinduzierten Bewehrungskorrosion und ein Tragwerksmodell, welches das Verfahrens der stetigen Laststeigerung zur Bestimmung der maximalen Traglast des Kastenträgers auf der Grundlage eines Finite-Elemente-Modells umsetzt. Zur Durchführung von Bayes'schen Aktualisierungen des Systemschädigungszustandes auf der Grundlage des DBN-Modells implementiert der Prototyp den Likelihood-Weighting-Algorithmus. Die entwickelte Architektur des Prototyps ermöglicht eine Erweiterung der Software um weitere Schädigungsprozesse. Der entwickelte Software-Prototyp ermöglicht Benutzern ohne vertiefte Kenntnisse der Zuverlässigkeitstheorie eine Berechnung des Einflusses von Bauwerksinformationen auf den Systemschädigungszustand und die Tragsicherheit eines Kastenträgers. Auf dieser Grundlage können effiziente Inspektions- und Überwachungsmaßnahmen identifiziert und das Erhaltungsmanagement optimiert werden. KW - Bridge KW - Condition survey KW - Damage KW - Deterioration KW - Development KW - Digital model KW - Durability KW - Engineering structure KW - Expert system KW - Forecast KW - Germany KW - Propability KW - Prototype KW - Reinforced concrete KW - Research report KW - Software KW - Stability KW - Stochastic process PY - 2015 UR - http://bast.opus.hbz-nrw.de/volltexte/2015/1615/ SN - 978-3-95606-190-5 SN - 0943-9293 VL - 117 SP - 1 EP - 74 PB - Carl Schünemann Verlag GmbH CY - Bergisch Gladbach AN - OPUS4-35193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Zuverlässigkeitsbasierte Bauwerksbewertung N2 - Die BAM erforscht mit Partnern an der TUM und DTU Methoden und Modelle für ein optimiertes Tragwerksmanagement von Infrastrukturbauwerken. Im Rahmen des vom BMVI und der BASt aufgelegten Projektclusters „Intelligente Brücke“ wurde ein Software-Prototyps zur zuverlässigkeitsbasierten Bewertung eines konkreten Spannbetonüberbaus unter Berücksichtigung von Inspektionen und Überwachungssystemen entwickelt. Der entwickelte Software-Prototyp ermöglicht Benutzern ohne vertiefte Kenntnisse der Zuverlässigkeitstheorie eine Berechnung des Einflusses von Bauwerksinformationen auf den Systemschädigungszustand und die Tragsicherheit. Auf dieser Grundlage können effiziente Inspektions- und Überwachungsmaßnahmen identifiziert und das Erhaltungsmanagement optimiert werden. T2 - BASt Symposium Intelligente Brücken - Der Weg in die Praxis CY - Bergisch Gladbach, Germany DA - 30.11.2015 KW - Intelligente Brücken KW - Brücken KW - Alterung KW - Bauwerksbewertung PY - 2015 AN - OPUS4-36537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Towards predictive maintenance of bridges N2 - Key features of predictive maintenance of structural systems are discussed and demonstrated in two examples. Challenges and needs for further research are discussed. T2 - Workshop Bridge Maintenance CY - Online Meeting DA - 09.04.2021 KW - Predictive maintenance KW - Deterioration KW - Structural systems PY - 2021 AN - OPUS4-52768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Cumulative failure probability of deteriorating structures: Can it drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th Internatinoal Probabilistic Workshop (IPW 2020) CY - Online Meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 AN - OPUS4-52770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Überwachung von Brücken mit digitalen Methoden N2 - Brücken werden durch Inspektionen und teilweise durch Monitoring überwacht, um Daten und Informationen über den Zustand und die Einwirkungen zu sammeln. Auf deren Grundlage werden Entscheidungen hinsichtlich Maßnahmen zur Gewährleistung der Sicherheit und Verfügbarkeit getroffen. In diesem Vortrag werden die Potentiale der Digitalisierung zur Unterstützung und Verbesserung der Brückenüberwachung diskutiert. Insbesondere werden die Bereiche Datenmanagement, Brückenmodellierung und Entscheidungsfindung betrachtet. T2 - BVPI Arbeitstagung 2022 CY - Berlin, Germany DA - 16.09.2022 KW - Entscheidungsfindung KW - Brücken KW - Überwachung KW - Digitalisierung KW - Datenmanagement KW - Modellierung PY - 2022 AN - OPUS4-55770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -