TY - JOUR A1 - Maul, Ronald A1 - Warth, B. A1 - Kant, Jill-Sandra A1 - Schebb, N.H. A1 - Krska, R. A1 - Koch, Matthias A1 - Sulyok, M. T1 - Investigation of the hepatic glucuronidation pattern of the fusarium mycotoxin deoxynivalenol in various species N2 - Deoxynivalenol (DON) is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon absorption, the major portion of the toxin is excreted by humans and animal species as glucuronide. However, consistent in vitro data on DON glucuronidation are lacking. In the present study, the metabolism of DON was investigated using liver microsomes from humans and six different animal species. It was shown that all animal and human liver microsomes led to the formation of up to three different mono-O-glucuronides with significant interspecies differences. While the activity of human liver microsomes was low (0.8 to 2.2 pmol·min–1·mg–1), bovine liver and rat liver microsomes conjugated DON with activities of 525 pmol·min–1·mg–1 and 80 pmol·min–1·mg–1, respectively. KW - Deoxynivalenol KW - Hepatic metabolism KW - Microsomes KW - Glucuronidation KW - Inter-species comparison PY - 2012 U6 - https://doi.org/10.1021/tx300348x SN - 0893-228X SN - 1520-5010 VL - 25 IS - 12 SP - 2715 EP - 2717 PB - Soc. CY - Washington, DC, USA AN - OPUS4-27604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schebb, N.H. A1 - Franze, B. A1 - Maul, Ronald A1 - Ranganathan, A. A1 - Hammock, B.D. T1 - In vitro glucuronidation of the antibacterial triclocarban and its oxidative metabolites N2 - Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is widely used as an antibacterial in bar soaps. During use of these soaps, a significant portion of TCC is absorbed by humans. For the elimination from the body, glucuronidation plays a key role in both biliary and renal clearance. To investigate this metabolic pathway, we performed microsomal incubations of TCC and its hydroxylated metabolites 2'-OH-TCC, 3'-OH-TCC, and 6-OH-TCC. Using a new liquid chromatography-UV-mass spectrometry method, we could show a rapid glucuronidation for all OH-TCCs by the uridine-5'-diphosphate-glucuronosyltransferases (UGT) present in liver microsomes of humans (HLM), cynomolgus monkeys (CLM), rats (RLM), and mice (MLM). Among the tested human UGT isoforms, UGT1A7, UGT1A8, and UGT1A9 showed the highest activity for the conjugation of hydroxylated TCC metabolites followed by UGT1A1, UGT1A3, and UGT1A10. Due to this broad pattern of active UGTs, OH-TCCs can be efficiently glucuronidated in various tissues, as shown for microsomes from human kidney (HKM) and intestine (HIM). The major renal metabolites in humans, TCC-N-glucuronide and TCC-N'-glucuronide, were formed at very low conversion rates (<1%) by microsomal incubations. Low amounts of N-glucuronides were generated by HLM, HIM, and HKM, as well as by MLM and CLM, but not by RLM, according to the observed species specificity of this metabolic pathway. Among the human UGT isoforms, only UGT1A9 had activity for the N-glucuronidation of TCC. These results present an anomaly where in vivo the predominant urinary metabolites of TCC are N and N'-glucuronides, but these compounds are slowly produced in vitro. KW - 3,4,4'-trichlorocarbanilide KW - Metabolism KW - Glucuronidation PY - 2012 U6 - https://doi.org/10.1124/dmd.111.042283 SN - 0090-9556 SN - 1521-009X VL - 40 IS - 1 SP - 25 EP - 31 PB - ASPET CY - Bethesda, Md., USA AN - OPUS4-25731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maul, Ronald A1 - Warth, B. A1 - Schebb, N.H. A1 - Krska, R. A1 - Koch, Matthias A1 - Sulyok, M. T1 - In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes N2 - The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate. KW - Deoxynivalenol KW - Glucuronidation KW - Uridine-diphosphoglucuronyltransferases (UGT) KW - Human recombinant UGT KW - Trichothecene KW - Phase II metabolism PY - 2015 U6 - https://doi.org/10.1007/s00204-014-1286-7 SN - 0340-5761 SN - 1432-0738 VL - 89 IS - 6 SP - 949 EP - 960 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-33204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -