TY - JOUR A1 - Gucunski, N. A1 - Romero, F. A1 - Kruschwitz, Sabine A1 - Feldmann, Rüdiger A1 - Abu-Hawash, A. A1 - Dunn, M. T1 - Multiple complementary nondestructive evaluation technologies for condition assessment of concrete bridge decks JF - Transportation research record N2 - Reinforced concrete bridge decks are exposed to several types of deterioration processes: corrosion, alkali silica reaction, carbonation, shrinkage, freeze thaw actions, and so forth. The most commonly found problem is corrosion-induced bridge deck delamination. Previous studies have shown that surveys of bridges relying on a single nondestructive evaluation (NDE) technology provide limited information about the condition of concrete bridge decks. To overcome limitations of individual technologies, a complementary approach using several NDE technologies should be used in bridge deck evaluation. The presented approach utilizes a suite of NDE technologies, namely, impact echo (IE), ultrasonic surface waves (USW), ground-penetrating radar (GPR), half-cell potential (HCP), and electrical resistivity (ER). The suite of NDE technologies was implemented in the evaluation of bridge decks on nine bridges in Iowa. The NDE was complemented by ground-truth measurements on the cores extracted from all nine bridge decks. Condition assessment with the five NDE technologies has clearly shown their advantages and limitations. For example, the GPR surveys provided assessment of concrete deterioration at relatively high speeds of data collection. In contrast, IE provided high accuracy in detection and characterization of delaminations in the deck but at a lower testing speed. HCP and ER tests provided assessment of the likelihood of corrosion, whereas the USW test provided accurate assessment of the effects of deterioration processes and defects on mechanical properties, primarily the degradation of the elastic modulus. Most important, the survey showed the advantages of use of multimodal NDE surveys in the comprehensiveness of condition assessment of concrete bridge decks. PY - 2010 DO - https://doi.org/10.3141/2201-05 SN - 0361-1981 VL - 2010 IS - 2201 SP - 34 EP - 44 PB - National Research Council CY - Washington, DC AN - OPUS4-24005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Gucunski, N. A1 - Imani, A. A1 - Romero, F. A1 - Nazarian, S. A1 - Yuan, D. A1 - Wiggenhauser, Herbert A1 - Shokouhi, Parisa A1 - Taffe, Alexander A1 - Kutrubes, D. T1 - Nondestructive testing to identify concrete bridge deck deterioration T2 - SHRP 2 Report S2-R06A-RR-1 N2 - This work was sponsored by the Federal Highway Administration in cooperation with the American Association of State Highway and Transportation Officials. It was conducted in the second Strategic Highway Research Program (SHRP 2), which is administered by the Transportation Research Board of the National Academies. The project was managed by Monica Starnes, Senior Program Officer for SHRP 2 Renewal. The research reported herein was performed by the Center for Advanced Infrastructure and Transportation (CAIT) at Rutgers University (RU); the Center for Transportation Infrastructure Systems (CTIS) at The University of Texas at El Paso (UTEP); the Federal Institute for Materials Research and Testing (BAM), Germany; and Radar Systems International, Inc. (RSI). Rutgers University was the coordinator and contractor for this project. Dr. Nenad Gucunski, professor and chair of Civil and Environmental Engineering and director of CAIT’s Infrastructure Condition Monitoring Program at RU, was the principal investigator. The other authors of this report are Dr. Soheil Nazarian, professor of Civil Engineering and director of CTIS at UTEP; Dr. Deren Yuan, research associate at CTIS at UTEP; Dr. Herbert Wiggenhauser, head of Non-Destructive Testing (NDT) in Civil Engineering at BAM; Dr. Alexander Taffe, leader of Combination and Automation of NDT of Buildings at BAM; Dr. Parisa Shokouhi, Alexander von Humboldt Research Fellow, hosted by BAM; and Doria Kutrubes, president of RSI. Arezoo Imani and Touraj Tayebi, graduate research assistants at RU, helped conduct the validation testing, data analysis, and web manual content preparation. Hoda Azari, a graduate research assistant, and Dr. Manuel Celaya, a research engineer at UTEP, assisted in the validation study as well. Hooman Parvardeh, research assistant at RU, helped build the reference database and develop the framework for the web manual, while Erica Erlanger, a research staff member at RU, edited the manuscript. Their contributions are gratefully acknowledged. The research team also gratefully acknowledges contributions of the participants from industry and academia in the validation testing. The participants include NDT Corporation; Germann Instruments; Olson Engineering; Dr. Ralf Arndt, National Research Council associate at FHWA Turner–Fairbank Highway Research Center; Ingegneria Dei Sistemi S.p.A. (IDS), Italy; 3D-RADAR, Norway; Dr. John Popovics, University of Illinois at Urbana-Champaign; Dr. Jinying Zhu, The University of Texas at Austin; Rutgers University—Center for Advanced Infrastructure and Transportation; and The University of Texas at El Paso—Center for Transportation Infrastructure Systems. The contributions of these participants were critical for the evaluation and grading of the performance of NDT technologies. PY - 2013 UR - http://onlinepubs.trb.org/onlinepubs/shrp2/SHRP2_S2-R06A-RR-1.pdf SN - 978-0-309-12933-6 SP - 1 EP - 96 PB - Transportation Research Board, Washington D.C. AN - OPUS4-34732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs JF - Metrologia N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -