TY - JOUR A1 - Unger, R. A1 - Braun, Ulrike A1 - Fankhänel, J. A1 - Daum, B. A1 - Arash, B. A1 - Rolfes, R. T1 - Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy N2 - Reliable simulation of polymers on an atomistic length scale requires a realistic representation of the cured material. A molecular modelling method for the curing of epoxy systems is presented, which is developed with respect to efficiency while maintaining a well equilibrated system. The main criterion for bond formation is the distance between reactive groups and no specific reaction probability is prescribed. The molecular modelling is studied for three different mixing ratios with respect to the curing evolution of reactive Groups and the final curing stage. For the first time, the evolution of reactive groups during the curing process predicted by the molecular modelling is validated with near-infrared spectroscopy data, showing a good agreement between simulation results and experimental measurements. With the proposed method, deeper insights into the curing mechanism of epoxy systems can be gained and it allows us to provide reliable input data for molecular Dynamics simulations of material properties. KW - Epoxy KW - NIR spectroscopy KW - Modelling PY - 2019 DO - https://doi.org/10.1016/j.commatsci.2019.01.054 SN - 0927-0256 VL - 161 SP - 223 EP - 235 PB - Elsevier AN - OPUS4-47431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quell, P. A1 - Knops, M. A1 - Heinicke, M. A1 - Rettenmeier, A. A1 - Kühn, M. A1 - Rücker, Werner A1 - Baeßler, Matthias A1 - Rolfes, R. A1 - Haake, G. A1 - Hahn, B. A1 - Benesch, M. A1 - van Radecke, H. A1 - Finger, K. A1 - Neumann, T. A1 - Herklotz, K. T1 - Offshore Wind Energy Research in Germany - RAVE - Research at Alpha VEntus N2 - To start the large-scale deployment of offshore wind in German waters, the German Federal Ministry for the Environment (BMU) supports the offshore test site "alpha ventus" in the North Sea with a research budget of about 50 million Euro in the next years. The overall objective of the research is to reduce the costs of offshore wind energy deployment in deep water. In order to provide all participating research projects with detailed data, the test site will be equipped with extensive measurement instrumentation. This research initiative was named RAVE – Research at Alpha VEntus – and consists of a variety of projects in connection with the installation and operation of alpha ventus. As part of the RAVE initiative, so far the participating institutes and companies have prepared projects on the following topics: • Realization of the joint measurements and data management • Analysis of loads, modelling and further development of the different components of offshore wind turbines • Loads at offshore foundations and structures • Further development of LIDAR wind measuring techniques • Grid integration of offshore wind energy • Monitoring of the offshore wind energy deployment in Germany – "Offshore WMEP" • Measurement of the operating noises and modelling of the sound propagation between tower and water • Ecologic research T2 - European Offshore Wind 2007 Conference & Exhibition CY - Berlin, Germany DA - 2007-12-04 KW - Offshore Wind Energy KW - Rave KW - Foundations PY - 2007 SP - 1 EP - 10 AN - OPUS4-17976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fankhänel, J. A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Daum, B. A1 - Kempe, A. A1 - Sturm, Heinz A1 - Rolfes, R. T1 - Mechanical properties of Boehmite evaluated by Atomic Force Microscopy experiments and Molecular Dynamic Finite Element simulations N2 - Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work.The studies are substantiated with accompanying X-ray diffraction and Raman experiments. KW - AFM KW - MDFEM KW - Nanocomposite KW - Epoxy KW - X-ray diffraction KW - Raman spectroscopy KW - Young’s modulus KW - Slippage of weakly linked layers PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384230 UR - https://www.hindawi.com/journals/jnm/2016/5017213/#B26 DO - https://doi.org/10.1155/2016/5017213 VL - 2016 IS - Article ID 5017213 SP - 1 EP - 13 PB - Hindawi Publishing Corporation AN - OPUS4-38423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -