TY - GEN A1 - Mix, Renate A1 - Joshi, Ranjit A1 - Schulze, Rolf-Dieter A1 - Meyer-Plath, Asmus A1 - Friedrich, Jörg Florian ED - Tachibana, K. ED - Takai, O. T1 - Aerosol and underwater plasma for polymer surface functionalization T2 - Proceedings of the 18th international symposium on plasma chemistry T2 - Proceedings of the 18th International Symposium on Plasma Chemistry (ISPC-18) CY - Kyoto, Japan DA - 2007-08-26 PY - 2007 SN - 978-4-9903773-4-2 SP - 27P/80, 1 EP - 4 PB - International Union of Pure and Applied Chemistry CY - Kyoto AN - OPUS4-20667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schulze, Rolf-Dieter A1 - Brademann-Jock, Kerstin A1 - Swaraj, Sufal A1 - Friedrich, Jörg Florian T1 - Characterisation of plasma polymers by thermoluminescence JF - Surface and coatings technology N2 - Thin plasma polymer films were deposited using the pulsed plasma mode. These plasma polymers should possess a more regular structure than those produced by the conventional continuous-wave (cw) mode, because of lower monomer fragmentation caused by the plasma pulses and the chemical chain propagation during the plasmaless (free!) periods. The thermoluminescence method was applied to functional groups carrying plasma polymer layers which are used in medical technology. Examples are formation of biocompatible, biosensoric and bioactive coatings or in metal polymer composites such as adhesion-promoting interlayers. In addition to the use of the conventional X-ray Photoelectron Spectroscopy for thin film characterization, the new method of thermoluminescence was applied to characterize undesired defects and structural specifics produced in the polymer films by pp or cw plasma mode. The main areas of focus were oxygen-containing groups produced by post-plasma oxygen introduction via auto-oxidation, oxidation of implemented unsaturations and trapped radical sites known as typical irregular structures in plasma polymers. KW - Plasma polymers KW - Thermoluminescence KW - Structure KW - Defects KW - Pulsed plasma KW - Continuous-wave plasma PY - 2006 DO - https://doi.org/10.1016/j.surfcoat.2005.12.003 SN - 0257-8972 VL - 201 IS - 3-4 SP - 543 EP - 552 PB - Elsevier Science CY - Lausanne AN - OPUS4-12818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mix, Renate A1 - Gerstung, Vanessa A1 - Falkenhagen, Jana A1 - Schulze, Rolf-Dieter A1 - Friedrich, Jörg Florian T1 - Characterization of plasma-polymerized allyl alcohol polymers and copolymers with styrene JF - Journal of adhesion science and technology KW - Plasma polymerization KW - Surface functionalization KW - Molar mass PY - 2007 SN - 0169-4243 SN - 1568-5616 VL - 21 IS - 5-6 SP - 487 EP - 508 PB - VNU Science Press CY - Utrecht AN - OPUS4-14765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Schulze, Rolf-Dieter A1 - Hidde, Gundula A1 - Friedrich, Jörg-Florian T1 - Electrospray ionization for deposition of ultra-thin polymer layers – principle, electrophoretic effect and applications JF - Journal of Adhesion Science and Technology N2 - Nebulizing of polymer solutions, in a high-voltage field under atmospheric conditions by electrospray ionization (ESI), is a comfortable way to deposit ultra-thin layers of polar or ionic polymers onto any conductive substrate materials. The substrate is grounded and the polymer solution is sprayed through a powered capillary. The formed charged droplets shrink by solvent evaporation during their way to the grounded substrate, the charges close ranks and the droplets collapse consecutively by charge repulsion, thus forming finally charged single macromolecules. After their discharging at the grounded substrate, an ultrathin ‘quasi-monomolecular’ polymer layer is formed. It could be shown by imaging of scratches through the polymer layer by atomic force microscopy that the deposited polymer layers are dense at a thickness of about 10 nm. Carbon fibre bundles were coated with poly (allylamine) (PAAm) or poly(acrylic acid) (PAA) as potential adhesion-promoting layers in fibre–polymer composites. The polymer deposition is self-inhibiting after formation of a continuous coverage of about 200 nm for PAAm and 30 nm for PAA as result of surface charging. Continuous deposition onto such isolating layers or polymers without charging can be achieved by using current of alternating polarity. The film formation is self-healing because of the electrophoretic effect, i.e. the ion discharging occurs preferentially at noncoated areas. This electrophoretic effect of ESI was demonstrated by completely enwrapping all the carbon fibres of the roving within a distance of about 100 μm far from its outside and also at the backside of the fibre bundle with about 80% of the topside coverage, as measured by X-ray photoelectron spectroscopy and visualized using scanning electron microscopy. KW - Complete enwrapping of fibres KW - Ultra-thin polymer layers KW - Self-healing KW - Electrospray deposition KW - Carbon fibres KW - Electrophoretic effect PY - 2012 DO - https://doi.org/10.1080/01694243.2012.727170 SN - 0169-4243 VL - 27 IS - 9 SP - 988 EP - 1005 PB - Taylor & Francis CY - London AN - OPUS4-42631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grytsenko, K.P. A1 - Lytvyn, P. A1 - Friedrich, Jörg Florian A1 - Schulze, Rolf-Dieter A1 - Schrader, S. T1 - Influence of plasma discharge on the structure of polytetrafluoroethylene film and step coverage on polymer substrate JF - Materials science and engineering C N2 - Polytetrafluoroethylene (PTFE) films have been deposited onto polycarbonate (PC) substrates from the products of PTFE evaporation, activated by a cloud of accelerated electrons. A 40.68 MHz glow discharge was used during the deposition process. The polymer films have been characterised by XPS, FTIR and AFM. The use of the low power plasma during film growth led to the formation of PTFE films with modified structure. Films are amorphous and contain more cross-links, but in general, the structure of their macromolecules is still linear. An increase of RF-power leads to the formation of films with large amount of double bonds and enhanced internal stresses. Deposition of PTFE on PC without plasma treatment led to the formation of PTFE clusters up to 50 nm in diameter. The RMS roughness of the films, deposited without plasma, was about 4 nm, while the films deposited with plasma treatment had a roughness of 1.5 nm. The use of plasma has an additional effect if a PTFE coating is deposited on the PC substrate with submicrometer-sized steps. Without plasma the steps retain a rectangular shape. Deposited with the RF-discharge the PTFE layers resemble plasma-polymerised films. Under certain conditions the deposited films can fill trenches in the substrate like a wetting liquid, while under other conditions they avoid trenches and grow in between them. KW - Polytetrafluoroethylene KW - PTFE KW - Vacuum deposition KW - Plasma KW - Discharge KW - Film PY - 2007 DO - https://doi.org/10.1016/j.msec.2006.09.029 SN - 0928-4931 SN - 1873-0191 VL - 27 IS - 5-8 SP - 1227 EP - 1231 PB - Elsevier CY - Amsterdam AN - OPUS4-14014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Schulze, Rolf-Dieter A1 - Brademann-Jock, Kerstin A1 - Friedrich, Jörg Florian ED - Pershin, L. T1 - Introduction of irregularities into plasma polymers by radiative and auto-oxidative processes T2 - Proceedings of the 17th International Symposium on Plasma Chemistry T2 - 17th International Symposium on Plasma Chemistry (ISPC-17) CY - Toronto, Canada DA - 2005-08-07 PY - 2005 SP - 1(?) EP - 6(?) CY - Toronto AN - OPUS4-11943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grytsenko, K. P. A1 - Kolomzarov, Y. A1 - Lytvyn, O. A1 - Strelchuk, V. A1 - Ksianzou, V. A1 - Schrader, S. A1 - Beyer, H. A1 - Servet, B. A1 - Enouz-Vedrenne, S. A1 - Garry, G. A1 - Schulze, Rolf-Dieter A1 - Friedrich, Jörg Florian T1 - Metal-filled polytetrafluoroethylene nanostructered thin film JF - Advanced science letters N2 - Thin metal-filled polyterafluoroethylene films with various metal concentration were produced by co-deposition in vacuum. Metal nanocluster size increased with metal concentration. Films were heated up to 300 degrees C, their optical spectra were recorded during heating. The changes in plasmon band shape and wavelength of the nanocluster ensemble during heating are not linearly related with metal concentration and heating temperature. This is caused by different thermal behavior of the complex processes, which are taking place in each of the two materials present in the film. The metal cluster size and optical properties of the whole ensemble can be purposefully formed by varying metal nature, its concentration and annealing temperature of the film. Nano- and micro-domains with properties different from original film were generated by focused excimer laser or electron beam. Gold-filled PTFE nano-structured films were used as substrate for surface enhanced Raman scattering measurements of ultrathin film of Rhodamine 6G dye. KW - Gold nanoparticles KW - Arrays KW - SERS PY - 2010 UR - http://openurl.ingenta.com/content?genre=article&issn=1936-6612&volume=3&issue=3&spage=308&epage=312 DO - https://doi.org/10.1166/asl.2010.1127 SN - 1936-6612 SN - 1936-7317 VL - 3 IS - 3 SP - 308 EP - 312 PB - American Scientific Publ. CY - Stevenson Ranch, Calif. AN - OPUS4-23957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Schulze, Rolf-Dieter A1 - Meyer-Plath, Asmus A1 - Joshi, Ranjit A1 - Wettmarshausen, Sascha T1 - New Plasma Techniques for Polymer Surface Modification with Monotype Functional Groups JF - Plasma processes and polymers N2 - The production of chemically-defined plasma polymers and the introduction of monotype functional groups onto polymer surfaces are described. One method is to lower the energetic level of low-pressure plasmas. Pressure- and plasma-pulsed plasmas were successfully tested for the production of chemically-defined plasma polymers by increasing the monomer supply during the plasma-off period. Well-defined ultra-thin polymer films with regular structure were deposited from atmospheric plasmas by electrospray techniques. Post-plasma wet-chemical processing was also applied, as were gas/liquid-based aerosols and underwater plasmas. KW - Plasma KW - Polymer-Oberflächenfunktionalisierung KW - Macromolecular plasma KW - Monotype functional groups KW - Plasma bromination KW - Plasma treatment KW - Pressure-pulsed plasma KW - Underwater plasma PY - 2008 DO - https://doi.org/10.1002/ppap.200700145 SN - 1612-8850 SN - 1612-8869 VL - 5 IS - 5 SP - 407 EP - 423 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, Jörg Florian A1 - Meyer-Plath, Asmus A1 - Mix, Renate A1 - Schulze, Rolf-Dieter A1 - Joshi, Ranjit ED - Tachibana, K. ED - Takai, O. T1 - New plasmas for polymer surface functionalization T2 - Proceedings of the 18th international symposium on plasma chemistry T2 - Proceedings of the 18th International Symposium on Plasma Chemistry (ISPC-18) CY - Kyoto, Japan DA - 2007-08-26 PY - 2007 SN - 978-4-9903773-4-2 SP - 29A/a8, 1 EP - 4 PB - International Union of Pure and Applied Chemistry CY - Kyoto AN - OPUS4-20666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Swaraj, Sufal A1 - Oran, Umut A1 - Lippitz, Andreas A1 - Schulze, Rolf-Dieter T1 - NEXAFS - spectroscopy on plasma-polymerized films prepared from organic molecules (ethylene, allyl alcohol, styrene) T2 - BESSY highlights - annual report 2003 KW - Plasma KW - Beschichtung KW - Organische Filme KW - Röntgenabsorptionsspektroskopie PY - 2004 UR - http://www.helmholtz-berlin.de/media/media/oea/web/pr_webseite/druckschriften/berichte/bessy/annualreport2003.pdf#page=297 SN - 0179-4159 SP - 297 EP - 299 PB - Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung CY - Berlin AN - OPUS4-3478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -