TY - JOUR A1 - Cappella, Brunero A1 - Hartelt, Manfred A1 - Wäsche, Rolf T1 - High resolution imaging of macroscopic wear scars in the initial stage N2 - The topography of wear scars on the surface of a steel disc coated with a diamond-like carbon (DLC) layer has been investigated with an Atomic Force Microscope (AFM). AFM topography images have been combined together taking advantage of the stitching technique for the study of wear scars in their initial stage. Moreover, the topography of the sample has been acquired before and after the sliding tests. In this way even very small changes of the sample surface (<10 nm) can be detected. Three main phenomena taking place at the very initial stage of wear could be identified: the abrasion of small asperities bulging out of the sample surface, the carving of swallow grooves with depth under 20 nm, and the partial or total closure of cavities present on the surface. This last phenomenon shows that, before the carving of a wear scar, the plastic deformation of particular regions of the sample, i.e. the volume around the cavities, takes place already after few cycles (in this case between 400 and 800) in the initial phase of the sliding test. KW - Atomic force microscopy KW - Stitching technique KW - Running in KW - Plastic deformation PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.07.013 SN - 0043-1648 VL - 338-339 SP - 372 EP - 378 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Cappella, Brunero T1 - The use of AFM for high resolution imaging of macroscopic wear scars N2 - In this article we demonstrate the use of atomic force microscopy (AFM) measurements for the study of macroscopic wear scars. By stitching AFM images acquired over the wear scar, the detailed structure of the scar can be characterized even when the scar is much wider than the typical maximum scan range of the AFM (50–100 µm). The results obtained by AFM are compared with those yielded by white light interferometry (WLI). The comparison validates the WLI measurements; at the same time, it shows decisive differences in the resolutions of these two methods. As a consequence, AFM measurements are necessary whenever a precise characterization of the structure of the scar is required. However, since stitching of AFM images is rather time-consuming, white light interferometry is recommended as a faster method whenever experiments are aimed at just a gross characterization of the scar and the measurement of mean quantities (e.g. the wear volume). KW - Wear scar KW - Imaging KW - Roughness KW - Wear volume KW - Atomic force microscopy KW - White light interferometry PY - 2014 DO - https://doi.org/10.1016/j.wear.2013.11.009 SN - 0043-1648 VL - 309 IS - 1-2 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam AN - OPUS4-30289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A.P. A1 - Wäsche, Rolf A1 - Hartelt, Manfred T1 - Tribological studies on polyetherketone composite under reciprocating sliding condition against steel cylinder N2 - Tribological studies on neat polyetherketone (PEK) and glass fiber reinforced PEK composite were carried out at room and elevated temperature (120 °C). The objective of this study was to characterize for friction and wear properties under dry reciprocating sliding condition at different experimental conditions. The polymer specimens were made to oscillate against steel cylinder as a counterpart. This kind of contact condition are frequently found in bushes, sliding bearing, electronic parts, seals, etc. The friction and wear behavior of neat PEK and composite was quite different at room temperature and elevated temperature. It was observed that glass fiber reinforcement is beneficial in controlling the wear of PEK matrix at room temperature than at elevated temperature. The test results are discussed by considering the surface properties i.e. material removal and film transfer formation. Scanning electron micrographs and optical micrographs of the worn polymer and steel cylinder was used to study the wear mechanisms. KW - Dry oscillating sliding KW - Polyetherketone composite KW - Wear mechanism KW - Contact geometry PY - 2015 DO - https://doi.org/10.1177/1350650115570403 SN - 1350-6501 VL - 229 IS - 7 SP - 795 EP - 806 PB - Institution of Mechanical Engineers CY - London AN - OPUS4-33526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rawat, S. S. A1 - Harsha, A. P. A1 - Khatri, O. P. A1 - Wäsche, Rolf T1 - Pristine, reduced, and alkylated graphene oxide as additives to paraffin grease for enhancement of tribological properties N2 - Pristine, reduced, and alkylated graphene oxides are applied as lubricating additives in paraffin grease. It has revealed that their crystalline structure governs the tribological properties of grease for steel tribo-pair. The microstructural analyses of grease samples showed that a loose fiber network of soap in the presence of graphene-based additive allows their facile release for efficient lubrication. The surface analyses based on the microscopic and elemental mapping show the development of a graphene-derived protective film on the worn scars, which protected the tribo-surfaces and subsided the wear. The reduced graphene oxide (rGO) with the interlamellar distance of 0.35 nm in the (002) plane provided minimum resistance to shear and exhibited maximum reduction in coefficient of friction (COF) for the paraffin grease. The presence of oxygen functionalities in the basal of pristine and alkylated graphene oxide (GO) compromised the interlamellar shearing under tribo-stress; consequently, higher COF than that of rGO. KW - Coefficient of friction KW - Graphene oxide KW - Grease KW - Nanoadditive KW - Tribo-film KW - Wear KW - Boundary lubrication KW - Grease lubrication KW - Lubricant additives KW - Lubricants PY - 2021 DO - https://doi.org/10.1115/1.4047952 VL - 143 IS - 2 SP - 021903-1 EP - 021903-11 PB - ASME AN - OPUS4-51170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A. P. A1 - Wäsche, Rolf A1 - Joyce, T. J. T1 - Friction and wear of two polyethylenes under different tribological contact conditions N2 - Tribological properties of ultrahigh-molecular weight polyethylene (UHMWPE) and cross-linked polyethylene (XLPE) were studied in two different wear modes. Firstly, reciprocating sliding wear studies under non-conformal contact investigated the effects of counterface surface roughness (polished, lapped and ground) of Ti6Al4V on the friction and wear of the polyethylenes. Secondly, two-body abrasive wear studies in conformal contact against different abrasive grit size papers were also carried out to ascertain the wear sensitivity of the polyethylenes under these adverse conditions. Wear mechanisms were studied using optical and scanning electron micrographs. The results of the reciprocating sliding wear studies showed that surface roughness of the counterface influenced friction and wear characteristics although no correlation was found between the coefficient of friction and specific wear rate. XLPE demonstrated wear sensitivity, particularly under severe abrasive wear condition. The results indicated that the performance of the polyethylenes greatly depends upon the tribological system under which it is operating. KW - Abrasive wear KW - Polyethylene KW - Reciprocating sliding wear KW - Surface roughness KW - Wear mechanism PY - 2021 DO - https://doi.org/10.1177/0967391120920130 SN - 0967-3911 SN - 1478-2391 VL - 29 IS - 5 SP - 393 EP - 404 PB - Sage Publishing CY - London AN - OPUS4-56903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Nolze, Gert A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of alpha-alumina in hot steam at high contact pressure N2 - The work examines the wear behaviour of α-aluminium oxide by combining thermodynamic modelling with advanced wear testing as well as analytical methods to get a better understanding of this structural ceramic material wear behavior and its possible use in high temperature steam environment. KW - Aluminium oxide KW - Temperature KW - Hot steam KW - Diaspore KW - Ceramic KW - Wear PY - 2018 DO - https://doi.org/10.1016/j.wear.2018.02.012 SN - 0043-1648 SN - 1873-2577 VL - 404-405 SP - 22 EP - 30 PB - Elsevier B.V. AN - OPUS4-44449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A. P. A1 - Wäsche, Rolf T1 - Influence of temperature on friction and wear characteristic of polyaryletherketones and their composites under reciprocating sliding condition N2 - In the present work it was shown the tribological behavior of different polyaryletherketones (PAEKs) and their composites under reciprocating sliding conditions at room temperature as well as at elevated temperature (120°C). KW - Composite KW - PAEKs KW - Reciprocating sliding KW - Solid lubricants KW - Wear mechanisms PY - 2018 DO - https://doi.org/10.1007/s11665-018-3633-y SN - 1059-9495 VL - 27 IS - 10 SP - 5438 EP - 5449 PB - Springer AN - OPUS4-46430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Jayachandran, Ashok Raj A1 - Brandt, Guido A1 - Schmid, Thomas A1 - Tamura, T. A1 - Nakase, T. T1 - Tribofilm formation of a-C:H coatings under influence of temperature in boundary lubricated oscillating sliding against alumina and silicon nitride N2 - Gegenstand dieses Beitrags ist der Einfluss von Temperatur und Gegenkörperwerkstoff auf die Bildung von Tribofilmen auf a-C:H Beschichtungen. Dies wurde mit einer Kugel-Ebene Anordnung im geschmierten Kontakt untersucht. KW - a-C:H KW - Temperature KW - Tribofilm KW - Lubricated sliding KW - Alumina KW - Silicon nitride PY - 2018 SN - 0724-3472 VL - 65 IS - 5 SP - 28 EP - 37 PB - expert Verlag CY - Tübingen AN - OPUS4-46034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Torsten A1 - Wäsche, Rolf T1 - Sintering behaviour of nanocrystalline titanium nitride powders N2 - The sintering behaviour of one microcrystalline and several nanocrystalline TiN powders was investigated by means of a gas pressure furnace with an integrated dilatometer. The investigated nanocrystalline powders strongly differ in the sintering activity. It can be concluded from the experiments, that small grain size, narrow grain size distribution and a low oxygen content are the most important prerequisites for high sintering activity of the nanocrystalline TiN powders. The extraordinary sintering activity of the best TiN powder makes it possible to produce a dense (< 2 % porosity), pure (no sintering aids) and nanostructured (mean diameter of crystals about 100 nm) TiN bodies. PY - 1995 SN - 0965-9773 VL - 6 IS - 1-4 SP - 357 EP - 360 PB - Pergamon Press CY - New York, NY AN - OPUS4-32975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Torsten A1 - Prümmer, R. A1 - Wäsche, Rolf T1 - Explosive compaction of nanosized TiN-powders KW - Explosive compaction KW - Nanocrystalline powder KW - Shaping methods KW - Sintering KW - Titanium nitride PY - 1997 DO - https://doi.org/10.4028/www.scientific.net/MSF.235-238.285 SN - 0255-5476 VL - 235-238 SP - 285 EP - 290 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-32976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -