TY - JOUR A1 - Becker, Roland A1 - Scholz, Philipp A1 - Jung, Christian A1 - Weidner, Steffen T1 - Thermo-Desorption Gas Chromatography-Mass Spectrometry for investigating the thermal degradation of polyurethanes N2 - Thermo-Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to investigate the thermal degradation of two different polyurethanes (PU). PU samples were heated at different heating rates and the desorbed products were collected in a cold injection system and thereafter submitted to GC-MS. Prospects and limitations of the detection and quantification of semi-volatile degradation products were investigated. A temperature dependent PU depolymerization was found at temperatures above 200 °C proved by an increasing release of 1,4-butanediol and methylene diphenyl diisocyanate (MDI) representing the main building blocks of both polymers. Their release was monitored quantitatively based on external calibration with authentic compounds. Size Exclusion Chromatography (SEC) of the residues obtained after thermodesorption confirmed the initial competitive degradation mechanism indicating an equilibrium of crosslinking and depolymerization as previously suggested. Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry of SEC fractions of thermally degraded PUs provided additional hints on degradation mechanism. KW - Thermo-desorption KW - Mass spectrometry KW - Polyurethanes KW - Thermal degradation PY - 2023 DO - https://doi.org/10.1039/D3AY00173C SN - 1759-9660 SP - 1 EP - 6 PB - Royal Society for Chemistry AN - OPUS4-57307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Stepec, Biwen An A1 - Bäßler, Ralph A1 - Becker, Roland A1 - Dimper, Matthias A1 - Feldmann, Ines A1 - Goff, Kira L. A1 - Günster, Jens A1 - Hofmann, Andrea A1 - Hesse, René A1 - Kirstein, Sarah A1 - Klein, Ulrich A1 - Mauch, Tatjana A1 - Neumann-Schaal, Meina A1 - Özcan Sandikcioglu, Özlem A1 - Taylor, Nicole M. A1 - Schumacher, Julia A1 - Shen, Yin A1 - Strehlau, Heike A1 - Weise, Matthias A1 - Wolf, Jacqueline A1 - Yurkov, Andrey A1 - Gieg, Lisa M. A1 - Gorbushina, Anna T1 - A 30-year-old diesel tank: Fungal-dominated biofilms cause local corrosion of galvanised steel N2 - The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings. KW - Fungal biofilms KW - Biodiesel degradation mechanisms PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655014 DO - https://doi.org/10.1038/s41529-025-00731-2 SN - 2397-2106 VL - 10 IS - 1 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Gebert, Antje A1 - Emmerling, Franziska A1 - Becker, Roland A1 - Nehls, Irene T1 - Koenigs-Knorr reaction of fusel alcohols with methyl (1-bromo-2,3,4-tri-O-acetyl-alpha-D-glucopyranosid)uronate leading to the protected alkyl glucuronides-crystal structures and high resolution 1H and 13C NMR data N2 - Crystal structures and high resolution 1H and 13C NMR spectral data for methyl (alkyl 2,3,4-tri-O-acetyl-β-D-glucopyranosid)uronates (alkyl = methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl, n-pentyl, 2-methyl-1-butyl and 3-methyl-1-butyl) are presented. KW - D-Glucuronic acid derivates KW - X-ray analysis KW - High resolution NMR KW - Anomeric configuration KW - Synthesis PY - 2012 DO - https://doi.org/10.1016/j.carres.2012.01.002 SN - 0008-6215 SN - 1873-426X VL - 352 SP - 186 EP - 190 PB - Elsevier CY - Amsterdam AN - OPUS4-25759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -