TY - JOUR A1 - Bachmann, H. J. A1 - Bucheli, T. D. A1 - Dieguez-Alonso, A. A1 - Fabbri, D. A1 - Knicker, H. A1 - Schmidt, H.-P. A1 - Ulbricht, A. A1 - Becker, Roland A1 - Buscaroli, A. A1 - Buerge, D. A1 - Cross, A. A1 - Dickinson, D. A1 - Enders, A. A1 - Esteves, V.I. A1 - Evangelou, M. W. H. A1 - Fellet, G. A1 - Friedrich, K. A1 - Gasco Guerrero, G. A1 - Glaser, B. A1 - Hanke, U. M. A1 - Hanley, K. A1 - Hilber, I. A1 - Kalderis, D. A1 - Leifeld, J. A1 - Masek, O. A1 - Mumme, J. A1 - Paneque Carmona, M. A1 - Calvelo Pereira, R. A1 - Rees, F. A1 - Rombola, A. G. A1 - de la Rosa, J. M. A1 - Sakrabani, R. A1 - Sohi, S. A1 - Soja, G. A1 - Valagussa, M. A1 - Verheijen, F. A1 - Zehetner, F. T1 - Towards the standardization of biochar analysis: the COST action TD1107 interlaboratory comparison JF - Journal of agricultural and food chemistry N2 - Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical–chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future. KW - Biochar KW - Analysis KW - Standardization KW - Ring test KW - Interlaboratory comparison PY - 2016 DO - https://doi.org/10.1021/acs.jafc.5b05055 SN - 0021-8561 SN - 1520-5118 VL - 64 IS - 2 SP - 513 EP - 527 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-35289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Theißen, H. A1 - Nehls, Irene T1 - Stabilisation of groundwater samples for the quantification of organic trace pollutants JF - Environmental science : processes & impacts N2 - The concentration of contaminants in groundwater samples can be decreased by degradation in the time course between field sampling and quantification in the laboratory, especially in samples from sites where degradation activity is enhanced by remediation measures. The sampling sites covered a variety of priority organic pollutants such as volatile aromatic and chlorinated compounds, phenols and petroleum hydrocarbons and different remediation strategies such as anaerobic and aerobic microbial in situ degradation, in situ chemical oxidation, and on-site purification with biological treatment. The stability of the contaminants' concentration was investigated over a time range of several hours without cooling in the autosampler of the analytical equipment (short term) and over several days of storage until analysis (long term). A number of stabilisation techniques suggested in international standards ISO 5667-3:2013 and ASTM D6517:2000 were compared both with regard to short term and long term stabilisation of the contaminants and their practicability for field sampling campaigns. Long term storage turned out to be problematic for most compound groups even under cooling. Short term stability was problematic also for volatiles such as benzenic aromates, naphthalene and volatile organic halogenated compounds to be analysed by headspace gas chromatography. Acidification (pH <2) was sufficient to prevent degradation of benzenic aromates, naphthalene, phenols and petrol hydrocarbons for up to seven days. The use of acids was not applicable to stabilise volatiles in waters rich in carbonates and sulphides due to stripping of the volatiles with the liberated gases. The addition of sodium azide was successfully used for stabilisation of volatile organic halogenated compounds. KW - Groundwater KW - Sampling KW - Organic pollutants KW - Stabilisation KW - Analysis PY - 2013 DO - https://doi.org/10.1039/c3em00332a SN - 2050-7887 SN - 2050-7895 VL - 15 IS - 12 SP - 2329 EP - 2337 PB - RSC Publ. CY - CambridgeRSC Publ. AN - OPUS4-29689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Koch, Matthias A1 - Lehnik-Habrink, Petra A1 - Nehls, Irene T1 - Quantification of polychlorinated biphenyls in plastic granulates from the recycling of cables - Reference materials and interlaboratory comparison JF - Chemosphere N2 - A procedure for the quantification of the PCB marker congeners 28, 52, 101, 138, 153, 180 in plastic waste form the recycling of cables in the range of content between 0.1 mg kg-1 and 20 mg kg-1 was validated. Representative reference materials for laboratory analyses were produced using granulates from different recycling processes. The method development included aspects of grinding, sieving, homogenising as well as the comparison of extraction methods and chromatographic conditions. The validated procedure foresees grinding of the technical sample to an upper particle size limit of 0.50 mm followed by extraction with an unpolar solvent such as n-hexane and gas chromatographic determination. LOD and LOQ for individual congeners ranged between 0.01 mg kg-1 and 0.08 mg kg-1. Electron capture detection (ECD) and mass selective detection (MS) were equivalent if chromatographic conditions were appropriately selected. The application of MS was advantageous in presence of significant amounts of interfering components which have been found in some cables. Three reference materials containing the marker congeners in the range of 0.1 mg kg-1–5 mg kg-1 were submitted to a final validation intercomparison with 23 selected field laboratories using the developed method. Relative reproducibility standard deviations varied between 15% and 33%. KW - PCB KW - Waste KW - Analysis KW - Method validation KW - Standardisation PY - 2006 DO - https://doi.org/10.1016/j.chemosphere.2006.02.035 SN - 0045-6535 SN - 0366-7111 VL - 65 IS - 9 SP - 1652 EP - 1659 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-14050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Buge, Hans-Gerhard A1 - Win, Tin T1 - Determination of pentachlorphenol (PCP) in waste wood - method comparison by a collaborative trial JF - Chemosphere N2 - Two independently developed and validated procedures for the determination of pentachlorophenol (PCP) in waste wood were compared by means of a collaborative trial. Both methods foresee quantification of PCP by gas chromatography (GC-ECD) after acetylation and differ with regard to the use of methanol or toluene/sulphuric acid, respectively, as solvent in the sonication extraction step. Test samples with established analyte homogeneity were prepared from a ground “real life” starting material. A total of 23 participating laboratories with experience in wood preservative analysis were instructed to apply both methods to three levels of content in the range of 0.5–20 mg PCP/kg. In case of the toluene/sulphuric acid extraction, lower recoveries and higher interlaboratory dispersion of results at the higher PCP contents were observed. Seen against the background of the Horwitz equation a reproducibility standard deviation of not, vert, similar19% for the methanol extraction at the 4.5 mg/kg level meets the requirement for a sound analytical method. Thus, the sonication extraction procedure with methanol has been annexed as a reference method to the German waste wood regulation. KW - Extraction KW - Derivatisation KW - Sonication KW - Analysis KW - Gas chromatography KW - Regulation PY - 2002 DO - https://doi.org/10.1016/S0045-6535(02)00004-8 SN - 0045-6535 SN - 0366-7111 VL - 47 SP - 1001 EP - 1006 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-1628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -