TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity JF - Metrologia N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöland, A. A1 - Christensen, P. A1 - Zetterström Evins, L. A1 - Bosbach, D. A1 - Duro, L. A1 - Farnan, I. A1 - Metz, V. A1 - Zencker, Uwe A1 - Ruiz-Hervias, J. A1 - Rodriguez-Villagra, N. A1 - Kiraly, M. A1 - Schillebeeckx, P. A1 - Rochman, D. A1 - Seidl, M. A1 - Dagan, R. A1 - Verwerft, M. A1 - Herranz Puebla, L. E. A1 - Hordynskyi, D. A1 - Feria, F. A1 - Vlassopoulos, E. T1 - Spent nuclear fuel management, characterisation, and dissolution behaviour: progress and achievement from SFC and DisCo JF - EPJ Nuclear Sciences & Technologies N2 - SFC is a work package in Eurad that investigates issues related to the properties of the spent nuclear fuel in the back-end of the nuclear fuel cycle. Decay heat, nuclide inventory, and fuel integrity (mechanical and otherwise), and not least the related uncertainties, are among the primary focal points of SFC. These have very significant importance for the safety and operational aspect of the back-end. One consequence is the operation economy of the back-end, where deeper understanding and quantification allow for significant optimization, meaning that significant parts of the costs can be reduced. In this paper, SFC is described, and examples of results are presented at about half-time of the work package, which will finish in 2024. The DisCo project started in 2017 and finished in November 2021 and was funded under the Horizon 2020 Euratom program. It investigated if the properties of modern fuel types, namely doped fuel, and MOX, cause any significant difference in the dissolution behavior of the fuel matrix compared with standard fuels. Spent nuclear fuel experiments were complemented with studies on model materials as well as the development of models describing the solid state, the dissolution process, and reactive transport in the near field. This research has improved the understanding of processes occurring at the interface between spent nuclear fuel and aqueous solution, such as redox reactions. Overall, the results show that from a long-term fuel matrix dissolution point of view, there is no significant difference between MOX fuel, Cr+Al-doped fuel, and standard fuels. KW - Spent nuclear fuel management KW - Spent fuel characterization KW - Dissolution behaviour PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572461 DO - https://doi.org/10.1051/epjn/2022029 SN - 2491-9292 VL - 9 SP - 1 EP - 12 PB - EDP Sciences CY - Les Ulis Cedex, France AN - OPUS4-57246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matos, P. R. de A1 - Andrade Neto, J. S. A1 - Durlo Tambara, Luis Urbano A1 - Rodríguez, E. D. A1 - Kirchheim, A. P. A1 - Campos, C. E. M. de T1 - Measuring the early-age volumetric change of cement paste through in-situ XRD JF - Materials Today Communications N2 - Volumetric changes follow Portland cement hydration reactions: aluminates' hydration is generally expansive, whereas silicates' reaction leads to shrinkage. Determining the volumetric variation at very early ages (i.e., first minutes/hours) presents operational challenges; most standards prescribe the measurement on specimens that are already hardened, while measurements from the fresh state are not standardized. This article reports the first attempt to use in-situ X-ray diffraction (XRD) to measure the early-age volumetric variation of a cementitious paste. For this purpose, a C3A + gypsum paste was assessed for 36 h, measuring its vertical displacement over time through XRD. The results showed that the expansion increased in the first ∼13 h, in line with the ettringite formed up to ∼11 h. In addition, the volumetric expansion agreed well with the heat release in calorimetry. It is concluded that the volumetric variation measurement of cementitious pastes through in-situ XRD is a promising technique, but further studies are needed to make this technique consolidated. KW - X-ray diffraction KW - Shrinkage KW - Expansion KW - Hydration KW - Portland cement PY - 2023 DO - https://doi.org/10.1016/j.mtcomm.2023.106857 SN - 2352-4928 VL - 36 SP - 1 EP - 4 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gonzalez-Rojano, N. A1 - Arias-Marin, E. A1 - Navarro-Rodriguez, D. A1 - Weidner, Steffen T1 - Bidirectional Synthesis of a Series of 2,5- Dodecanoy-phenylene-ethynylene oligomers JF - Synlett N2 - A family of rigid rod like 2,5-dodecanoxy-phenyleneethynylene oligomers having 3, 5, 7, and 9 repeating units was selectively synthesized by a bi-directional iterative divergent-convergent approach. Starting from a central 1,4-bis(dodecanoxy)-2,5-diiodobenzene monomer, only two repetitive reactions were involved with each cycle of oligomerization: a Pd/Cu cross-coupling with the bifunctional monomer 1-(3,3-diethyltriazene)-2,5-bis(dodecanoxy)-4-(ethynyl)benzene, generating oligomers with terminal triazene groups, followed by a further nucleophilic substitution with iodine. KW - Conjugated oligomers KW - Phenyleneethynylenes KW - Tri­azenes KW - Aryl iodides KW - Sonoga PY - 2005 DO - https://doi.org/10.1055/s-2005-868474 SN - 0936-5214 SN - 1437-2096 IS - 8 SP - 1259 EP - 1262 PB - Thieme CY - Stuttgart AN - OPUS4-11100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Elordui-Zapatarietxe, S. A1 - Emteborg, H. A1 - Fettig, Ina A1 - Cabillic, J. A1 - Alasonati, E. A1 - Gantois, F. A1 - Swart, C. A1 - Gokcen, T. A1 - Tunc, M. A1 - Binici, B. A1 - Rodriguez-Cea, A. A1 - Zuliani, T. A1 - Gonzalez Gago, A. A1 - Pröfrock, D. A1 - Nousiainen, M. A1 - Sawal, G. A1 - Buzoianu, M. A1 - Philipp, Rosemarie T1 - An interlaboratory comparison on whole water samples JF - Accreditation and Quality Assurance N2 - The European Water Framework Directive 2000/60/EC requires monitoring of organic priority pollutants in so-called whole water samples, i.e. in aqueous nonfiltered samples that contain natural colloidal and suspended particulate matter. Colloids and suspended particles in the liquid phase constitute a challenge for sample homogeneity and stability. Within the joint research project ENV08 ‘‘Traceable measurements for monitoring critical pollutants under the European Water Framework Directive 2000/60/EC’’, whole water test materials were developed by spiking defined amounts of aqueous slurries of ultrafinely milled contaminated soil or sediment and aqueous solutions of humic acid into a natural mineral water matrix. This paper presents the results of an European-wide interlaboratory comparison (ILC) using this type of test materials. Target analytes were tributyltin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in the ng/L concentration range. Results of the ILC indicate that the produced materials are sufficiently homogeneous and stable to serve as samples for, e.g. proficiency testing or method validation. To our knowledge, this is the first time that ready-to-use water materials with a defined amount of suspended particulate and colloidal matter have been applied as test samples in an interlaboratory exercise. These samples meet the requirements of the European Water Framework Directive. Previous proficiency testing schemes mainly employed filtered water samples fortified with a spike of the target analyte in a water-miscible organic solvent. KW - Water Framework Directive KW - Wasserrahmenrichtlinie KW - Interlaboratory comparison KW - Ringversuch KW - Whole water sample KW - Gesamtwasserprobe PY - 2016 DO - https://doi.org/10.1007/s00769-015-1190-8 SN - 0949-1775 SN - 1432-0517 VL - 21 IS - 2 SP - 121 EP - 129 PB - Springer AN - OPUS4-35730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -