TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 U6 - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waikom Singh, S. A1 - Stegemann, Robert A1 - Kreutzbruck, Marc T1 - Three-dimensional finite element analysis of the stress-induced geometry effect on self-magnetic leakage fields during tensile deformation N2 - The metal magnetic memory (MMM) technique relies on the measurement of stress-induced self-magnetic leakage fields (SMLFs) at the stress concentration zones (SCZs) of ferromagnetic materials during mechanical loading. However, there is an associated change in geometry of the specimen along with the stress due to plastic deformation. This paper presents a three-dimensional finite element (3D-FE) analysis of the stress-induced geometry effect on SMLFs in notched specimens during tensile deformation. The tangential (Hx) and normal (Hy) components of the SMLF signals have been predicted from the deformed specimens caused by different levels of tensile stress. Key parameters from the SMLF signals are determined for the possible estimation of damage in the specimen under tension. Studies reveal that the stress-induced geometry effect has a great influence (about 20%) on the SMLF signals, especially in the plastic deformation stage. The results show that the peak amplitude could be used for the estimation of different deformation stages under tension. The study also reveals that the SMLF signal is influenced by the thickness of the tensile specimen. The model-predicted thickness profile has also been experimentally validated. KW - Metal magnetic memory KW - Finite element modelling KW - Steel KW - Tensile deformation PY - 2016 U6 - https://doi.org/10.1784/insi.2016.58.10.544 SN - 1354-2575 SN - 0007-1137 VL - 58 IS - 10 SP - 544 EP - 550 AN - OPUS4-38134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schymura, M. A1 - Stegemann, Robert A1 - Fischer, A. T1 - Crack propagation behavior of solution annealed austenitic high interstitial steels N2 - Austenitic stainless steels provide a beneficial combination of chemical and mechanical properties and have been used in a wide field of applications for over 100 years. Further improvement of the chemical and mechanical properties was achieved by alloying nitrogen. But the solubility of N within the melt is limited and can be increased in substituting Ni by Mn and melting under increased pressure. In order to avoid melting under pressure and decrease production costs, a part of N can also be substituted by C. This leads to austenitic high interstitial steels (AHIS). Within the solution annealed state strength and ductility of AHIS is comparable or even higher of those of AHNS and can be further improved by cold working. Unfortunately the endurance limit does not follow this trend as it is known from cold-worked austenitic CrNi steels. This is due to the differences of the slip behavior which is governed by the stacking fault energy as well as other near field effects. Construction components operating under cyclic loads over long periods of time cannot be considered being free of voids or even cracks. Thus the crack propagation behavior is of strong interest as well. This contribution presents the tensile, fatigue, crack propagation and fracture toughness properties of AHNS and AHIS in comparison to those of CrNi-steels. The differences are discussed in relation to microstructural characteristic as well as their alterations under cyclic loading. KW - Austenitic high interstitial steel KW - Fatigue KW - Stable crack propagation KW - Planar slip PY - 2015 U6 - https://doi.org/10.1016/j.ijfatigue.2015.04.014 SN - 0142-1123 VL - 79 SP - 25 EP - 35 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sharatchandra Singh, W. A1 - Stegemann, Robert A1 - Kreutzbruck, Marc A1 - Mukhopadhyay, C. K. A1 - Purnachandra Rao, B. T1 - Mapping of Deformation-Induced Magnetic Fields in Carbon Steels Using a GMR Sensor Based Metal Magnetic Memory Technique N2 - Giant magneto-resistive (GMR) sensor based metal magnetic memory (MMM) technique is proposed for mapping of deformation-induced self-magnetic leakage fields (SMLFs) in carbon steel. The specimens were subjected to different amounts of tensile deformation and the deformation-induced SMLFs were measured using a GMR sensor after unloading the specimens. 3D-nonlinear finite element modeling was performed to predict stress–strain state in a steel specimen under tensile load. The experimentally obtained SMLF images were correlated with the finite element model predicted stress–strain states. Studies reveal that the MMM technique can detect the plastic deformation with signal-to-noise ratio better than 20 dB. The technique enables the mapping of plastic deformation in carbon steels for the evaluation of the severity of deformation. The study also reveals that deformation-induced SMLF is influenced by the presence of initial surface residual stress, introduced by shot peening. The intensity of SMLF signal is found to increase with increase in tensile load and decrease with shot peening. KW - GMR KW - Metal Magnetic Memory KW - 3D-finite element modeling KW - Plastic deformation KW - Carbon steel PY - 2018 U6 - https://doi.org/10.1007/s10921-018-0470-8 SN - 0195-9298 VL - 37 IS - 2 SP - 21 PB - Springer US AN - OPUS4-45667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457878 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 U6 - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -