TY - JOUR A1 - You, Zengchao A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry N2 - In this work, we employed glow discharge optical emission spectrometry (GD-OES) depth profiling as a fast and semi-quantitative method to investigate the aluminum (Al) current collector degradation in commercial lithium cobalt oxide (LCO) pouch cells with no Al2O3 pretreatment. After battery aging, a heterogeneous deposit was found on the surface of the cathode. Gray hotspot areas within an extensive pale white region were formed. Consistent with energy dispersive X-ray (EDX) analysis of micro-cross sections milled via targeted focused ion beam (FIB), an Al-containing layer of approximately 3 µm can be observed using GD-OES. We attribute one main cause of this layer is the degradation of the Al current collector. The nonuniform growth of this layer was investigated by performing GD-OES depth profiling at different in-plane positions. We found that the gray area has a higher mass concentration of Al, probably in metallic form, whereas the white area was probably covered more homogeneously with Al2O3, resulting from the inhomogeneous distribution of the pitting positions on the current collector. Compared to FIB-EDX, GD-OES enables a faster and more convenient depth profile analysis, which allows the more productive characterization of lithium-ion batteries (LIBs), and consequently benefits the development of preferable battery materials. KW - GD-OES KW - depth profiles KW - Li-ion battery KW - battery aging mechanism KW - current collector corrosion PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106681 SN - 0584-8547 VL - 205 SP - 106681 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-57383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leonhardt, Robert A1 - Böttcher, Nils A1 - Schmidt, Anita A1 - Krug von Nidda, Jonas T1 - Exploring the safety behavior of lithium-ion cells aged at elevated temperatures N2 - Understanding the safety characteristics of aged Lithiumion (Li-ion) batteries is essential for their effective integration into second-life applications. The SafeLiBatt project is a research initiative focused on evaluating safety-related parameters of these batteries. The presented study elucidates the impact of a cells’ state of health (SOH) on its safety behavior. Four highpower pouch cells (Li-NMC622) were exposed to elevated temperatures to achieve accelerated ageing. Subsequent thermal abuse tests were utilized to assess crucial parameters related to the thermal runaway (TR). When compared to their non-aged (begin of life, BOL) analogs, the aged cells implicated a TR-onset lowered by about 10 – 20 K. T2 - Advanced Battery Power 2023 CY - Aachen, Germany DA - 26.04.2023 KW - li-ion batteries KW - ageing KW - battery ageing PY - 2023 AN - OPUS4-59220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leonhardt, Robert A1 - Tichter, Tim A1 - Scharpmann, Philippa A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Krug von Nidda, Jonas T1 - Deconvoluting the impact of early-life abuse conditions on the degradation of lithium-ion cells N2 - The successful repurposing of degraded lithium-ion (Li-ion) batteries in second-life applications is a vital step towards achieving a circular economy. While reusing aged Li-cells is a promising way of mitigating their overall environmental footprint, it is crucial to anticipate their future safety and performance characteristics . Unfortunately, predicting these properties is a cumbersome task, essentially caused by limited knowledge of the interference of different degradation modes in the cells’ first life. To still enable estimating of these parameters from a current state, the present study systematically investigates the impacts of abusive conditions in an early phase of the cells’ life on their subsequent degradation behavior. For this purpose, individual Li-cells are initially stressed by different measures such as overcharging, deep-discharging, plating, and deliberate combinations of the aforementioned methods. Electrochemical performance indicators are monitored during subsequent cycling of the cells which provides insights into the interdependencies of different degradation modes induced by specific stress conditions. In this manner, it is clarified whether or not the total degradation can be determined by a convolution or a superposition of individual deterioration effects and, thus, be described as a multidimensional state function. This knowledge will finally contribute to a better understanding of the performance and safety behavior of degraded Li-ion batteries which can help to successfully implement them into second-life applications. T2 - ECS Gothenburg CY - Gothenburg, Sweden DA - 08.10.2023 KW - Li-ion batteries KW - Early-life overstress KW - Ageing PY - 2023 AN - OPUS4-59221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leonhardt, Robert A1 - Böttcher, Nils A1 - Dayani, Shahab A1 - Rieck, Arielle A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Tichter, Tim A1 - Krug von Nidda, Jonas T1 - Exploring the electrochemical and physical stability of lithium-ion cells exposed to liquid nitrogen N2 - The transport and storage of lithium-ion (Li-ion) batteries — damaged or in an undefined state — is a major safety concern for regulatory institutions, transportation companies, and manufacturers. Since (electro)chemical reactivity is exponentially temperature-dependent, cooling such batteries is an obvious measure for increasing their safety. The present study explores the effect of cryogenic freezing on the electrochemical and physical stability of Li-ion cells. For this purpose, three different types of cells were repeatedly exposed to liquid nitrogen (LN2). Before and after each cooling cycle, electrical and electrochemical measurements were conducted to assess the impact of the individual freezing steps. While the electrochemical behavior of the cells did not change significantly upon exposure to LN2 , it became apparent that a non-negligible number of cells suffered from physical changes (swelling) and functional failures. The latter defect was found to be caused by the current interrupt device of the cylindrical cells. This safety mechanism is triggered by the overpressure of expanding nitrogen which enters the cells at cryogenic temperatures. This study underlines that the widely accepted reversibility of LN2 -cooling on a material scale does not allow for a direct extrapolation toward the physical integrity of full cells. Since nitrogen enters the cell at cryogenic temperatures and expands upon rethermalization, it can cause an internal overpressure. This can, in turn, lead to mechanical damage to the cell. Consequently, a more appropriate temperature condition — less extreme than direct LN2 exposure — needs to be found KW - Lithium-ion battery KW - LN2 cooling KW - Battery characterization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599248 DO - https://doi.org/10.1016/j.est.2024.111650 VL - 89 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -