TY - CONF A1 - Eberwein, Robert T1 - Systeme mit tiefkalt verflüssigten Gasen in Brandereignissen N2 - Die volumetrische Energiedichte eines Gases kann durch Verflüssigung erhöht wer-den. Diese findet statt, wenn das Gas unter den Siedepunkt abgekühlt wird. Verflüs-sigte Gase mit großer Bedeutung für die Energiewende sind verflüssigter Wasser-stoff (LH2) und verflüssigtes Erdgas (LNG), dessen Verflüssigung Temperaturen von unter -160 °C bedarf. Systeme zur Speicherung dieser verflüssigten Gase müssen in der Regel für Überdrücke ausgelegt sein und benötigen thermische Superisolierun-gen (TSI), um die tiefkalten Bedingungen über längere Zeit halten zu können und Verluste durch Boil-Off gering zu halten. TSI mit Vakuum und MLI oder Perlit sind für viele Anwendungen mit LNG und LH2 geeignet. Bei solchen Systemen handelt es sich in der Regel um doppelwandige Strukturen, bei denen die Innenwand mit dem tiefkalten Fluid in Kontakt steht. Die Lücke, zwischen der Innen- und der Außen-wand befindet sich unter Vakuumbedingungen und enthält zudem MLI oder Perlite. Diese Kombination von Isolationsmethoden ermöglicht es auf kleinstem Raum sehr gute thermische Isolationswirkung zu erreichen. Aus wirtschaftlicher Sicht sind die Systeme gut durchdacht. Das Wissen über das Verhalten dieser Systeme bei einem typischen Ereignis wie einem Brand ist jedoch begrenzt. Dieses Wissen ist aber not-wendig, um die Sicherheit der wachsenden Zahl von Anwendungen auf dem Markt bewerten zu können. T2 - H2-Kolloquium des Kompetenzzentrum „H2Safety@BAM” CY - Online meeting DA - 04.07.2022 KW - Tiefkalt KW - Verflüssigt KW - Isolation KW - Auslegungsüberschreitend PY - 2022 AN - OPUS4-55178 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Wasserstoff - Kryogene Anwendungen N2 - Wasserstoff wird als ein potenzieller alternativer Energieträger gesehen, mit dem die für 2050 gesetzten Klimaziele erreicht werden könnten. Der Transport von Wasserstoff ist mittels verschiedener Speichertechniken möglich, von denen der kryogene Transport mit den größten volumetrischen Energiedichten einhergeht. Hierdurch eignen sich diese Speicher besonders für die energieintensiven Verkehrsmittel im Land-, See- und Flugverkehr. Im Vortrag werden Speichertechniken, Gefahren im Umgang mit kryogenen Gasen sowie bisherige Störfälle dargestellt. Darauf aufbauend wird ein Teil der aktuellen Forschungsarbeit an der BAM vorgestellt, die die Sicherheit dieser Speicher unter außergewöhnlichen Belastungen adressiert. T2 - 26. Gefahrgutkongress Mecklenburg-Vorpommern CY - Rostock, Germany DA - 03.11.2022 KW - Wasserstoff KW - H2 KW - LNG KW - LH2 KW - Tank PY - 2022 AN - OPUS4-56181 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Eberwein, Robert A1 - Scarponi, G. E. A1 - Dal Pozzo, Alessandro A1 - Otremba, Frank T1 - Systems With Cryogenic Liquefied Gases In Fire-Incidents N2 - The volumetric energy density of a gas can be increased by liquefaction, which occurs when the gas is cooled below the saturation point. Liquefied gases of great importance to the energy transition are Liquefied Hydrogen (LH2) and Liquefied Natural Gas (LNG), which can be liquefied at temperatures below 160°C. Systems for storing these gases typically must be overpressure resistant and require thermal super insulations (TSI) to hold cryogenic conditions and minimize boil-off losses from evaporation. TSI with vacuum and MLI or perlites are suitable for many applications involving LNG and LH2. Such systems are typically double-walled structures where the inner wall is in contact with the cryogenic liquefied gas. MLI or perlites are located in the gap between the inner and the outer wall, that is kept under vacuum conditions. This combination of insulations strongly reduces the heat transfer between the environment and the cryogenic liquefied gas. From an economic point of view the systems are well sophisticated. However, knowledge of the behavior of this kind of systems in a typical event such as a fire is limited, but necessary to evaluate the safety of the increasing number of applications. The objective of the research is to determine how TSI behaves at different fire temperatures during fire exposure and afterwards. Special attention is paid to changes in the heat flux, the material properties and vacuum state over time. For this purpose, thermogravimetric analysis (TGA) studies have been carried out. In addition, a test rig was developed that allows testing of TSI at temperatures up to 1000°C under realistic integration conditions and subsequent analysis of the TSI samples. In the test rig the double-wall with vacuum and MLI or perlites inside is simulated. The fire conditions are simulated on one side of the double-wall by adjustable electrical heating elements. This process allows the implementation of repeatable heat flows of up to 100 kW/m². On the other side of the double-wall, cold or cryogenic conditions are simulated with a heat exchanger through which water or the vapor of liquid nitrogen (approx. -196°C) flows. The heat exchanger is also used to determine the heat flux through the double-wall. Thus, the test rig allows thermal loading and performance analysis of TSI samples at the same time. Compared to tests with real cryogenic systems, tests with this experimental setup have the advantage that, first, the instrumentation is easier to realize, and a higher repeatability is ensured. Second, the local heat flow can be determined over time, and the sample of a TSI can be taken non-destructively and thus analyzed. Third, the tests are less risky as well as time+ and material intensive, so that more tests and variants can be investigated with the same budget. Preliminary results obtained considering several types of MLI under vacuum show that all observed typs of MLI can be damaged under strong thermal loading. The damages observed were outgassing, melting, shrinkage, cracking, lump formation, and concomitant local loss of the MLI's function as a radiation shield. However, the study also shows that a damage does not always have an extreme effect on the insulating performance. T2 - IMECE2022 CY - Columbus, Ohio, USA DA - 30.10.2022 KW - LH2 KW - LNG KW - Safety KW - Insulation KW - Tank PY - 2022 AN - OPUS4-56445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Rogge, Andreas A1 - Behrendt, F. A1 - Knaust, Christian T1 - Dispersion Modeling of LNG-Vapor on Land – A CFD-Model Evaluation Study N2 - Based on methane from renewable resources, LNG is an alternative fuel for heavy and long-distance traffic in land transport. Contrary to its positive properties, the fuel contains risks from an explosion and extremely low temperatures for personal and infrastructure safety. CFD-models are suitable for doing risk analyses for arbitrary scenarios. For examining how to model for risk research the dispersion of LNG-vapor, this paper contains a model variant study, with an evaluation by experiments. This paper describes the use of the CFD-code ANSYS Fluent for simulating experiments of the ‘LNG Safety Program Phase II‘. The content of the well-documented experiments was the research of the vaporization rate of LNG on land and the dispersion of LNG-vapor in the air. Based on the comparison to two experiments, overall 12 CFD-model variants with varying thermal and turbulence parameters were examined how they affect the transient LNG-vapor dispersion in air. The definition of turbulence-boundary-condition at the domain borders had the biggest impact on modeling, followed by the turbulence model. The most accurate model variant had been applied for observing the spreading behavior of LNG-vapor in the air after evaporation on land and analyzing the influence of the LNG-composition to the dispersion. The results show that the mixture of LNG-vapor and the air in the free field is cooler than the ambient air and spreads like a heavy gas on the ground. KW - LNG KW - CFD KW - Heavy gas KW - Model evaluation PY - 2020 DO - https://doi.org/10.1016/j.jlp.2020.104116 VL - 65 SP - 104116 PB - Elsevier Ltd. AN - OPUS4-50697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Untersuchung der Gefährdung von Personen und Bauwerken in Folge des Versagens von LNG Kraftstoffspeichern für Fahrzeuge in Tunneln N2 - Basierend auf Methan aus regenerativen Quellen, stellt LNG einen alternativen Kraftstoff für den schweren Fernverkehr da. Gegenüber seinen positiven Eigenschaften birgt der Kraftstoff aber auch Risiken, durch seine sehr niedrige Temperatur und seine Brennbarkeit, für die Personen- und Bauwerkssicherheit. Für die Erforschung der Risiken eignen sich CFD-Modelle, deren Erforschung unter anderem Ziel des TF-SiVi Projekts der BAM war. Einen Einblick in die angewendete Methodik zur Erforschung von Unfallszenarien mit LNG gibt der Vortrag. T2 - Kolloquium EVUR CY - TU-Berlin, Germany DA - 17.07.2019 KW - LNG KW - Tunnel KW - Explosion KW - Stoffausbreitung PY - 2019 AN - OPUS4-48494 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Eberwein, Robert T1 - Untersuchung der Gefährdung von Personen und Bauwerken in Folge des Versagens von LNG-Kraftstoffspeichern für Fahrzeuge in Tunneln N2 - Liquefied Natural Gas (LNG) aus regenerativen Quellen, stellt einen potenziellen Kraftstoff für den Schwer- und Fernverkehr des Straßenverkehrs dar. Gegenüber seinen positiven Eigenschaften zu dem in diesem Verkehrssektor häufig verwendeten Kraftstoff Diesel birgt der Kraftstoff aber auch Gefahren für Personen und Bauwerke durch seine sehr niedrige Temperatur bei der Speicherung von ca. -160 °C und seine Explosionsfähigkeit in der Gas-Phase. In der Arbeit wurde sich mit der Gefährdung von Personen und Bauwerken hinsichtlich der von LNG ausgehenden Gefahren in Tunneln auseinandergesetzt. Tunnel stellen besonders schützenswerte Bauwerke dar, da aus vorhergehenden Störfällen in Tunneln bekannt ist, dass diese mit hohen Personen-, Bauwerks-, und Volkswirtschaftlichen-Schäden einhergehen können. Untersuchungsschwerpunkt bei der Bewertung von Gefährdungen durch LNG stellte eine Ereigniskaskade bestehend aus Freisetzung, Verdampfung, Stoffausbreitung und Zündung des sich gebildeten explosionsfähigen LNG-Gas/Luft-Gemisches dar. Mit dem Ziel eine solche Ereigniskaskade realitätsnah vorhersagen und zukünftig hierzu Risikoanalysen durchführen zu können wurden innerhalb der Arbeit Parameterstudien sowie Kalibrierungen und Validierungen gegenüber experimentellen Untersuchungen durchgeführt. Mit den Modellen wurden in der Arbeit exemplarische Fallbeispiele zu Störfällen untersucht. Ergebnisse dieser waren, dass Gefährdungen insbesondere von flüssigem LNG nach dessen Freisetzung und der Verbrennung von LNG-Gas/Luft-Gemischen ausgingen. N2 - Liquefied Natural Gas (LNG) from regenerative sources is a potential fuel for heavy and long-distance road traffic. In contrast to its positive properties compared to diesel, which is often used in this transport sector, the fuel also contains hazards from its very low storage temperature of approx. -160 °C and its explosiveness in the gas phase for personal and structural safety. The dissertation dealt with the dangers to persons and infrastructures according to the hazards by LNG in tunnels. Tunnels are especiallyworth protecting structures since it is known from previous incidents in tunnels that they can go hand in hand with high damage to the people, the structure, and the economy. The main focus of the investigation into the assessment of hazards from LNG was an event cascade consisting of release, evaporation, dispersion, and ignition of the explosive LNG-vapor/air-mixture formed. To realistically predict such an event cascade and being able to carry out risk analyzes for this purpose in the future, parameter studies such as calibrations and validations were carried out concerning experimental investigations. Exemplary case studies on incidents were examined in the thesis with the validated models. The results of this were that there were especially hazards in particular from liquid LNG after its release and the combustion of LNG-vapor/air-mixtures. KW - Verflüssigtes Erdgas KW - Erneuerbare Energien KW - Numerische Strömungsmechanik KW - Sicherheitstechnik KW - Liquefied Natural Gas KW - LNG KW - Renewable fuels KW - CFD KW - Safety engineering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521145 DO - https://doi.org/10.14279/depositonce-11346 SP - 1 EP - 240 PB - TU Berlin CY - Berlin AN - OPUS4-52114 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Untersuchung der Gefährdung von Personen und Bauwerken in Folge des Versagens von LNG-Kraftstoffspeichern für Fahrzeuge in Tunneln N2 - Liquefied Natural Gas (LNG) aus regenerativen Quellen, stellt einen potenziellen Kraftstoff für den Schwer- und Fernverkehr des Straßenverkehrs dar. Gegenüber seinen positiven Eigenschaften zu dem in diesem Verkehrssektor häufig verwendeten Kraftstoff Diesel birgt der Kraftstoff aber auch Gefahren für Personen und Bauwerke durch seine sehr niedrige Temperatur bei der Speicherung von ca. -160 °C und seine Explosionsfähigkeit in der Gas-Phase. In der Arbeit wurde sich mit der Gefährdung von Personen und Bauwerken hinsichtlich der von LNG ausgehenden Gefahren in Tunneln auseinandergesetzt. Tunnel stellen besonders schützenswerte Bauwerke dar, da aus vorhergehenden Störfällen in Tunneln bekannt ist, dass diese mit hohen Personen-, Bauwerks-, und Volkswirtschaftlichen-Schäden einhergehen können. Untersuchungsschwerpunkt bei der Bewertung von Gefährdungen durch LNG stellte eine Ereigniskaskade bestehend aus Freisetzung, Verdampfung, Stoffausbreitung und Zündung des sich gebildeten explosionsfähigen LNG-Gas/Luft-Gemisches dar. Mit dem Ziel eine solche Ereigniskaskade realitätsnah vorhersagen und zukünftig hierzu Risikoanalysen durchführen zu können wurden innerhalb der Arbeit Parameterstudien sowie Kalibrierungen und Validierungen gegenüber experimentellen Untersuchungen durchgeführt. Mit den Modellen wurden in der Arbeit exemplarische Fallbeispiele zu Störfällen untersucht. Ergebnisse dieser waren, dass Gefährdungen insbesondere von flüssigem LNG nach dessen Freisetzung und der Verbrennung von LNG-Gas/Luft-Gemischen ausgingen.zeige weniger N2 - Liquefied Natural Gas (LNG) from regenerative sources is a potential fuel for heavy and long-distance road traffic. In contrast to its positive properties compared to diesel, which is often used in this transport sector, the fuel also contains hazards from its very low storage temperature of approx. -160 °C and its explosiveness in the gas phase for personal and structural safety. The dissertation dealt with the dangers to persons and infrastructures according to the hazards by LNG in tunnels. Tunnels are especiallyworth protecting structures since it is known from previous incidents in tunnels that they can go hand in hand with high damage to the people, the structure, and the economy. The main focus of the investigation into the assessment of hazards from LNG was an event cascade consisting of release, evaporation, dispersion, and ignition of the explosive LNG-vapor/air-mixture formed. To realistically predict such an event cascade and being able to carry out risk analyzes for this purpose in the future, parameter studies such as calibrations and validations were carried out concerning experimental investigations. Exemplary case studies on incidents were examined in the thesis with the validated models. The results of this were that there were especially hazards in particular from liquid LNG after its release and the combustion of LNG-vapor/air-mixtures. T2 - Disputation, TU Berlin CY - Berlin, Germany DA - 19.01.2021 KW - Erneuerbare Energien KW - Numerische Strömungsmechanik KW - Sicherheitstechnik KW - Verflüssigtes Erdgas KW - CFD KW - LNG KW - Liquefied Natural Gas KW - Renewable fuels KW - Safety engineering PY - 2021 AN - OPUS4-52119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Untersuchung der Gefährdung von Personen und Bauwerken in Folge des Versagens von LNG-Kraftstoffspeichern für Fahrzeuge in Tunneln N2 - Der Markt von LNG als Transportgut und als Kraftstoff ist seit Jahrzehnten kontinuierlich am Wachsen, wobei das Hauptanwendungsgebiet im Schiffsverkehr lag. LNG ist verflüssigtes Erdgas mit Hauptbestandteil Methan, das neben fossilen, aus erneuerbaren Quellen, wie synthetischen Methan oder Biogas, gewonnen werden kann. LNG hat als Kraftstoff sehr gute Eigenschaften dessen Potenzial als alternativer Kraftstoff zu Diesel im Schwerlast- und Fernverkehr gesehen wird. Dabei weist LNG gegenüber Diesel geringere Emissionen von CO2, Feinstaub, Stickoxiden und Lärm auf und hat gegenüber anderen erneuerbaren Energiespeichern wie CNG, Elektrobatterien oder Wasserstoff die höchste volumetrische und zweitgrößte gravimetrische Energiedichte. Neben seinen Vorteilen zu anderen erneuerbaren Energieträgern birgt LNG durch seine sehr niedrige Temperatur von bis zu 160°C und seiner Brennbarkeit aber auch neue Gefahren für Personen und Infrastrukturen. Zur Bewertung von Gefahren und zur späteren Durchführung von Risikobewertungen bedarf es Methoden und Modellen deren Untersuchung Ziel des Forschungsprojekts war. Schwerpunkt der Untersuchung stellt die Freisetzung von LNG in Tunnel, mit sich anschließender Stoffausbreitung und verzögerter Zündung des Kraftstoff-Luftgemisches dar. Unfallszenarien mit Brandereignissen in Tunnel haben gezeigt, dass diese meist mit hohen Personen, Bauwerks und volkswirtschaftlichen Schäden verbunden sind. Des Weiteren zeigten Untersuchungen das von Gasexplosionen in Umschließungen wie sie ein Tunnel darstellt, mehr Gefahren ausgehen als von Gasexplosionen im Freifeld. Im Vortrag werden die untersuchten Modelle und die aus dem Projekt gewonnenen Erkenntnisse für die Stoffausbreitung und Verbrennung der Gasphase von LNG in Umschließungen vorgestellt. T2 - Abteilungs-Vortragsseminar-Doktoranden CY - BAM Berlin, Germany DA - 08.12.2020 KW - LNG KW - Erdgas KW - Störfall KW - CFD KW - Schwergas PY - 2020 AN - OPUS4-51959 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Vela-Wallenschus, Iris A1 - Knaust, Christian A1 - Rogge, Andreas T1 - Safety issues related to LNG transportation in a tunnel N2 - Transport of hazardous materials is multi-modal and international. All kinds of transportation modes can be used such as trucks, barges, trains, ships. In the previous work BAM, Delft University of Technology and TNO have identified that the decision-making process for the shipper depends from strategy, tactic and operational conditions. The tactical decision of shipping companies contains the routing for the hazardous materials. The comparison of routing possibilities for the identification of the best safety route needs a concept for the validation of the partial routes. In the first step validation aspects for partial routes will be analyzed in different accident scenarios with a truck in a tunnel. In the study we focused on regenerative liquefied natural gas (LNG), a cryogenic liquefied substance with a temperature of -161°C. There are different possibilities of the LNG release which will be analysed and the consequences will be estimated. T2 - 5th SAF€RA Symposium CY - Bilbao, Spanien DA - 18.05.2017 KW - LNG transportation PY - 2017 AN - OPUS4-40654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - Fire KW - MLI KW - Safety PY - 2023 AN - OPUS4-57974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Cryogenic Storage Tanks In Fire Incidents N2 - The ongoing geo-political conflicts and the increasing need for the implementation of measures to improve the energetic system sustainability are increasing the importance of tanks for storing cryogenic fluids in the energy industry. The most common example of cryogenic tank applications is the transport of natural gas and hydrogen in their liquid form (LNG and LH2 respectively) for which, considering the same transport volume cryogenic storage ensures significantly higher transport capacities with respect storage based solely on overpressure. A common feature of all cryogenic transported fluids is that their condition must be maintained minimizing heat leaks from the environment as much as possible. This is achieved by the implementation of thermal super Insulations (TSI) systems based on e. g. rock wool, perlites, microspheres, multilayer insulations (MLI), and vacuum which have proven to be effective in applications. However, due to the relatively short period of use in some applications, the small number of documented incidents, and the still few investigations carried out in the field, the exploitation of such systems in the cryogenic fluids transport sector still suffers from insufficient knowledge about the course and consequences of incidents. Accidents involving collisions, fires, and their combination are quite common in the transportation sector and may generate extraordinary loads on the tank and its insulation system, eventually leading to tank failure. The present study focuses on the behavior of TSI systems in tanks when it is exposed to an external heat source representative of a hydrocarbon fire scenario. This may cause an increase of the heat flux into a tank by several orders of magnitude with respect to normal design conditions, thus inducing severe and in the TSI, causing the rapid release of flammable gas and even resulting in a Boiling Liquide Expanding Vapour Explosion (BLEVE). To study such scenarios a test rig was developed at BAM that allows testing of TSI at industrial conditions and enables subsequent analysis of TSI samples. This test rig considers the typical double-walled design of tanks for cryogenic fluids with vacuum and an additional insulating material in the interspace. Adjustable electrical heating elements simulate the fire on one side of the double wall. This process allows the implementation of repeatable heat loads of up to 100 kW/m². The other side of the double wall is represented by a fluid-supported heat exchanger, which allows the simulation of cold or cryogenic conditions in the test rig, and to determine the heat flux transmitted through the double wall. Thus, the test rig allows thermal loading and performance analysis of TSI samples at the same time. In the presentation, the results of diverse tested TSI systems will be presented and discussed. As a result of this study, the list of advantages and disadvantages for the choice of tested TSI expands. Within the test, all samples degraded as a consequence of a hydrocarbon fire-orientated thermal load. Strong differences in the behavior of the tested TSI systems over temperature, location, and time were observed. Additionally, the tested MLI insulations were significantly more resistant to their base materials. These results are relevant for the design, the definition of national and international regulations, the Risk assessment, and the development of safety concepts for cryogenic tanks. T2 - Cryogenic Storage Tanks CY - Munich, Germany DA - 18.04.2024 KW - LH2 KW - LNG KW - Fire KW - Insulation PY - 2024 AN - OPUS4-59921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, D. A1 - Chianese, C. A1 - Scarponi, G. A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, V. T1 - Analysis of high temperature degradation of multi-layer insulation (MLI) systems for liquid hydrogen storage tanks N2 - The interest in hydrogen-based green energy is increasing worldwide, and the same is true for hydrogen-powered vehicles. Among the possible solutions to store hydrogen in such vehicles, cryogenic tanks equipped with multi-layer insulation (MLI) are the most promising to increase the amount of energy stored per unit volume. However, MLI is affected by severe deterioration when exposed to an external source of heat such as a fire following a car accident, leaving the tank unprotected and leading to failure in a relatively short time. In this work, a one-dimensional model to evaluate MLI thermal degradation when a liquid hydrogen tank is exposed to fire is presented. The relevance of taking MLI degradation into account when simulating the pressure increase due to external fire exposure is here demonstrated through the analysis of several case studies. The results show that MLI systems performance depletes within a few minutes of exposure to hydrocarbon poolfire. T2 - ICheaP 16 CY - Naples, Italy DA - 21.05.2023 KW - LH2 KW - MLI KW - Tiefkalt KW - Fire KW - Tank PY - 2023 SN - 2283-9216 VL - 2023 SP - 1 EP - 6 PB - AIDIC Servizi S.r.l. AN - OPUS4-57584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Systems for the storage of cryogenic liquefied gases N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. The presentation includes 2 main topics of the department. First TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. To analyze fire scenarios a High-Temperature Thermal Vacuum Chamber (HTTVC) was developed that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this chamber, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. In the presentation, the results are presented. Second, the studying of accident scenarios enables the improvement of thermal superinsulation and to find novel insulation concepts. This is necessary for LH2 large-scale storages, for which state-of-the-art solutions are not suitable. Within the presentation, a novel insulation concept will be presented. T2 - Specialist Meeting - Threats to HAZMAT Pressure Vessels and BLEVE CY - Berlin, Germany DA - 25.04.2023 KW - Crygenic KW - LH2 KW - LNG KW - Fire KW - MLI PY - 2023 AN - OPUS4-57414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - A comparative study on insulation materials in tanks for the storage of cryogenic fluids in fire incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High-Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 SP - 1 EP - 7 AN - OPUS4-58768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - MLI KW - Fire PY - 2023 SP - 1 EP - 8 PB - ASME AN - OPUS4-57973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Davide, Camplese A1 - Giordano, Emrys Scarponi A1 - Valerio, Cozzani A1 - Frank, Otremba T1 - Experimental investigation on the behavior of thermal super insulation materials for cryogenic storage tanks in fire incidents N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks? The storage of cryogenic fuels requires tanks with Thermal Super Insulations (TSI) to keep the fluid cold and limit the formation of boil-off gas. TSI has proven itself in some applications since the middle of the 20th century, but in the land transport sector they are still quite new, where accidents involving fires, collisions, and their combination are to be expected. This work focuses on investigating the behavior of different types of TSI while exposed to a heat source representing a fire. To this aim, a High-Temperature Thermal Vacuum Chamber (HTTVC) was applied, which allows the thermal loading of a thermal insulation material in a vacuum and measuring the heat flow transported through the TSI in parallel. In this study, the results of 6 samples are presented regarding 3 types of MLI, rock wool, perlites, and microspheres. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as to a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for reducing the risks to people and infrastructures in the progressive establishment of tanks for cryogenic fluids in our industry and society. The data presented in the study can be used to improve the design of tanks and TSIs, the assessment of accident scenarios, and the development of measures for first responders. KW - Liquefied hydrogen KW - Liquefied natural gas KW - Tanks KW - Fire KW - Insulation KW - MLI KW - Perlite KW - Rock wool KW - Microspheres PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599947 DO - https://doi.org/10.1016/j.psep.2024.04.131 SN - 0957-5820 VL - 187 SP - 240 EP - 248 PB - Elsevier AN - OPUS4-59994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank ED - Di Benedetto, Almerinda T1 - Experimental Research Of A Tank For A Cryogenic Fluid With A Wall Rupture In A Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 SP - 707 EP - 717 AN - OPUS4-60460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Experimental Research Of A Tank For A Cryogenic Fluid With a Wall Rupture In a Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 AN - OPUS4-60456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grotelüschen, Frank A1 - Robert, Eberwein A1 - Berhorst, Ralf T1 - Supertanker für H2: EU-Projekt konstruiert günstigen Riesenspeicher N2 - Wasserstoff stellt einen potenziellen Energieträger für den großskaligen Import von Energie nach Europa dar. Von seinen verschiedenen Speicherformen eignet sich hierfür insbesondere verflüssigter Wasserstoff, mit dem sich auf gleichem Volumen deutlich mehr Energie speichern lässt als bei der druckbasierten Speicherung. Verflüssigter Wasserstoff wird bei minus 253°C gespeichert und muss für dessen Transport lange bei dieser niedrigen Temperatur gehalten werden. Dies stellt besondere Herausforderungen an die thermische Isolation von Tanks. Der Erforschung nachhaltiger, kosten- und energieeffizienter sowie sicherer thermischen Isolationen wird im NICOLHy Projekt, unter Leitung der BAM, nachgegangen. KW - Verflüssigter Wasserstoff KW - Thermische Isolation PY - 2024 UR - https://www.deutschlandfunk.de/supertanker-fuer-h2-eu-projekt-konstruiert-guenstigen-riesenspeicher-dlf-d50ff14a-100.html PB - Deutschlandradio CY - Hamburg AN - OPUS4-60538 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -