TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water JF - Metrologia N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Ren, T. A1 - Wang, J. A1 - Vocke Jr., R.D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze JF - Metrologia KW - CCQM KW - Metrology KW - Isotope amount ratios KW - Lead PY - 2014 UR - http://www.bipm.org/utils/common/pdf/final_reports/QM/K98/CCQM-K98.pdf DO - https://doi.org/10.1088/0026-1394/51/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A Tech. Suppl. SP - 08017-1 EP - 08017-47 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hioki, A. A1 - Nonose, N. A1 - Liandi, M. A1 - Jingbo, C. A1 - Liuxing, F. A1 - Chao, W. A1 - Cho, K.H. A1 - Suh, J.K. A1 - Min, H.S. A1 - Lim, Y. A1 - Recknagel, Sebastian A1 - Koenig, Maren A1 - Vogl, Jochen A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Borinsky, M. A1 - Puelles, M. A1 - Hatamleh, N. A1 - Acosta, O. A1 - Turk, G. A1 - Rabb, S. A1 - Sturgeon, R. A1 - Methven, B. A1 - Rienitz, O. A1 - Jaehrling, R. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Kozyreva, S.B. A1 - Korzh, A.A. T1 - Final report of the key coamparison CCQM-K88: Determination of lead in lead-free solder containing silver and copper JF - Metrologia N2 - The CCQM-K88 key comparison was organized by the Inorganic Analysis Working Group of CCQM to test the abilities of the national metrology institutes to measure the mass fraction of lead in lead-free solder containing silver and copper. National Metrology Institute of Japan (NMIJ), National Institute of Metrology of China (NIM) and Korea Research Institute of Standards and Science (KRISS) acted as the coordinating laboratories. The participants used different measurement methods, though most of them used inductively coupled plasma optical emission spectrometry (ICP-OES) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Accounting for relative expanded uncertainty, comparability of measurement results was successfully demonstrated by the participating NMIs for the measurement of the mass fraction of lead in lead-free solder at the level of 200 mg/kg. It is expected that metals at mass fractions greater than approximately 100 mg/kg in lead-free solder containing silver and copper can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. KW - CCQM KW - Metrology KW - IDMS PY - 2013 DO - https://doi.org/10.1088/0026-1394/50/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08002, 1A (Technical Supplement 2013) SP - 1 EP - 19 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" JF - Metrologia N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Schiel, D. A1 - Görlitz, V. A1 - Jährling, R. A1 - Vogl, Jochen A1 - Lara-Manzano, J.V. A1 - Zon, A. A1 - Fung, W.-H. A1 - Buzoianu, M. A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Valiente, L. A1 - Yim, Y.-H. A1 - Hill, S. A1 - Champion, R. A1 - Fisicaro, P. A1 - Bing, W. A1 - Turk, G.C. A1 - Winchester, M. R. A1 - Saxby, D. A1 - Merrick, J. A1 - Hioki, A. A1 - Miura, T. A1 - Suzuki, T. A1 - Linsky, M. A1 - Barzev, A. A1 - Máriássy, M. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Bezruchko, M. T1 - Final report on CCQM-K87: Mono-elemental calibration solutions JF - Metrologia N2 - The aim of this comparison was to demonstrate the capability of national metrology institutes to measure elemental mass fractions at a level of w(E) ≈ 1 g/kg as found in almost all mono-elemental calibration solutions. These calibration solutions represent an important link in traceability systems in inorganic analysis. Virtually all traceable routine measurements are linked to the SI through these calibration solutions. Every participant was provided with three solutions of each of the three selected elements chromium, cobalt and lead. This comparison was a joint activity of the Inorganic Analysis Working Group (IAWG) and the Electrochemical Analysis Working Group (EAWG) of the CCQM and was piloted by the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), the Centro Nacional de Metrología (CENAM, Querétaro, Mexico) and the National Institute of Standards and Technology (NIST, Gaithersburg, USA). A small majority of participants applied inductively coupled plasma optical emission spectrometry (ICP OES) in combination with a variety of calibration strategies (one-point-calibration, bracketing, calibration curve, each with and without an internal standard). But also IDMS techniques were carried out on quadrupole, high resolution and multicollector ICP-MS machines as well as a TIMS machine. Several participants applied titrimetry. FAAS as well as ICP-MS combined with non-IDMS calibration strategies were used by at least one participant. The key comparison reference values (KCRV) were agreed upon during the IAWG/EAWG meeting in November 2011 held in Sydney as the added element content calculated from the gravimetric sample preparation. Accordingly the degrees of equivalence were calculated. Despite the large variety of methods applied no superior method could be identified. The relative deviation of the median of the participants' results from the gravimetric reference value was equal or smaller than 0.1% (with an average of 0.05%) in the case of all three elements. KW - CCQM KW - Metrology KW - IDMS PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08010, 1A (Technical Supplement 2012) SP - 1 EP - 104 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinovskiy, D. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - CCQM-P134 Pb isotope amount ratios and delta-values in bronze N2 - Isotope amount ratios (hereafter referred to as simply isotope ratios) are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. Three pilot studies have focused on the quality of isotope ratio determinations (P48 “U isotope ratios in urine”, P75 “stable isotopes in Methionine”, P105 “87Sr/86Sr in wine”). Moreover, isotope ratio measurements are fundamental to IDMS amount of substance determinations. For example, when Pb quantification using IDMS is undertaken, this requires the measurements of Pb isotope ratios. While the requirements for isotope ratio accuracy and precision in the case of of IDMS are generally quite modest, “absolute” Pb isotope ratio measurements for geochemical age dating and source rock characterization as well as forensic provenance and fingerprinting studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a Key Comparison was urgently needed. Therefore, it was decided at the IAWG meeting in Paris in April 2011 that a Key Comparison on the determination of Pb isotope ratios in a pure Pb solution and in a bronze sample should be organized and accompanied by a pilot study. Measuring Pb isotope amount ratios in a pure Pb solution, while seemingly straight forward, rigorously tests the ability of analyst to correct for any instrumental effects (such as mass discrimination and blank correction) on the measured ratios. Pb, present in trace amounts in a metal matrix sample (e.g. Pb in bronze), provides a real world test of the whole chemical and instrumental procedure, from chemical separation and sample purification to analysis and subsequent correction of appropriate instrumental effects on the separated samples. A suitable bronze material with a Pb mass fraction between 10 and 100 mg·kg-1 was available at BAM. A high purity solution of Pb with a mass fraction of approximately 100 mg·kg-1 was also available. By comparing the Pb isotope ratio results obtained for the bronze sample with the Pb isotope ratio results from the Pb solution, potential biases arising from the processing of the bronze sample could be effectively identified and separated from the instrumental effects arising from the measurement and data processing protocol. KW - Isotope ratio KW - Delta value KW - Molar mass KW - Measurement uncertainty KW - Traceability PY - 2017 UR - https://www.bipm.org/wg/CCQM/IAWG/Allowed/IAWG_Pilot_Studies/CCQM-P134.pdf SP - 1 EP - 42 PB - BIPM (Bureau International des Poids et Mesures) CY - Paris AN - OPUS4-47709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Schiel, D. A1 - Rienitz, O. T1 - Primäre Kalibriermaterialien für die Elementanalytik JF - Nachrichten aus der Chemie PY - 2003 DO - https://doi.org/10.1002/nadc.20030510714 SN - 1439-9598 SN - 1521-3854 VL - 51 IS - 7/8 SP - 827 EP - 829 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2582 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Schiel, D. A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Gernand, W. A1 - Oeter, D. T1 - Rückführung in der Elementanalytik JF - PTB-Mitteilungen PY - 2005 SN - 0030-834X VL - 115 IS - 4 SP - 295 EP - 299 PB - Wirtschaftsverl. NW CY - Bremerhaven AN - OPUS4-12056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiel, D. A1 - Rienitz, O. A1 - Jährling, R. A1 - Güttler, B. A1 - Matschat, Ralf A1 - Scharf, Holger A1 - Birkhahn, Jürgen A1 - Labarraque, G. A1 - Fisicaro, P. A1 - Borchers, U. A1 - Schwesig, D. T1 - Metrological concept for comparable measurement results under the European water framework directive: demonstration of its applicability in elemental analysis JF - Accreditation and quality assurance N2 - Within the scope of a project of the 'European Association of National Metrology Institutes' (EURAMET), a European metrological dissemination System (network) providing traceable reference values assigned to matrix materials for validation purposes is described and put to the test. It enables testing laboratories (TL) to obtain comparable results for measurements under the 'EU Water Framework Directive 2000/60/EC' (WFD) and thus, to comply with a core requirement of this very directive. The dissemination system is characterized by the fact that it is available to all laboratories throughout Europe which intend to perform measurements in the context of the WFD and that it can ensure sustainable metrological traceability to the International System of Units (SI) as a reference point for the measurement results. This Dissemination system is set up in a hierarchical manner and links up the level of the national metrology institutes (NMI) with that of the TLs via an intermediate level of calibration laboratories (CL) by comparison measurements. The CLs are expert laboratories with respect to the measurement of the analytes considered here (within the project, the CLs are called potential calibration laboratories (PCL)) and are additionally involved in the organization of comparison measurements within the scope of regional quality assurance (QA) systems. Three comparison measurements have been performed to support the approach. A total of about 130 laboratories participated in this exercise with the focus on the measurement of the priority substances Pb, Cd, Hg, and Ni defined in the WFD. The elemental concentrations in the water samples roughly corresponded to one of the established environmental quality standards (EQS), the annual average concentration (AA-EQS), which is defined in the daughter Directive 2008/105/EC of the WFD. It turned out that a significant number of TLs still need to improve their measurement methods in order to be able to fulfill the Minimum requirements of the WFD, in particular, with regard to the elements Cd and Hg probably due to their low EQS values. Furthermore, it became obvious that the hierarchical Dissemination system suggested here actually corresponds to the measuring capabilities of the three participating Groups (NMIs, PCLs, and TLs). KW - Metrology KW - Metrological traceability KW - Comparability KW - Elemental analysis KW - Water framework directive PY - 2011 DO - https://doi.org/10.1007/s00769-011-0792-z SN - 0949-1775 SN - 1432-0517 VL - 16 IS - 10 SP - 489 EP - 498 PB - Springer CY - Berlin AN - OPUS4-24485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Rienitz, O. A1 - Schiel, D. A1 - Gernand, W. A1 - Oeter, D. T1 - Traceability system for elemental analysis JF - Accreditation and quality assurance N2 - A complete metrological traceability system for measurement results of chemical analysis was set up. Core components are pure substances (national standards) characterised at the highest metrological level, primary solutions prepared from these pure substances and secondary solutions deduced from the primary solutions and intended for sale. The relative uncertainty of the element mass fraction of the primary substances and solutions is < 0.01 and < 0.05%, respectively. For the certification of transfer solutions and for stability testing, a precision measurement method for element contents has been developed by means of optical emission spectrometry (ICP OES) by which uncertainties between 0.1 and 0.05% can be achieved. The dissemination to field laboratories is effected with the aid of a calibration laboratory of the German Calibration Service (DKD) which certifies the element content of the secondary solutions with an uncertainty <= 0.3%. Calibration with these solutions enables the user to establish traceability of his measurement results to the International System of Units (SI). Currently, the system comprises Cu, Fe, Bi, Ga, Si, Na, K, Sn, W, and Pb. KW - Elemental analysis KW - Traceability KW - Elemental calibration solutions KW - Pure substances KW - Precision measurement of elements PY - 2006 DO - https://doi.org/10.1007/s00769-005-0084-6 SN - 0949-1775 SN - 1432-0517 VL - 10 IS - 11 SP - 633 EP - 639 PB - Springer CY - Berlin AN - OPUS4-12199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -