TY - JOUR A1 - Gluth, Gregor A1 - Rickard, W.D.A. A1 - Werner, Steve A1 - Pirskawetz, Stephan T1 - Acoustic emission and microstructural changes in fly ash geopolymer concretes exposed to simulated fire N2 - Two fly ash-based geopolymer concretes with quartz aggregates or with expanded clay (lightweight) aggregates were exposed to the ISO 834-1 standard fire curve in a small-scale fire test set-up. Acoustic emission measurements during fire exposure and subsequent cooling were employed to study spalling events and cracking during the tests. Optical microscopy and additional acoustic measurements were conducted after the testing to better understand the crack propagation in the samples. The testing revealed that neither of the concretes were susceptible to spalling, which is particularly notable for the concrete with quartz aggregates, as it is a high-strength concrete. This behavior is attributed to the relatively high permeability of the concretes and their low amount of chemically bound water. Significant crack formation was detected only around the temperature of the alpha–beta quartz transition (573 °C) and on cooling. Because of aggregate deformations at the quartz transition temperature, deterioration after heating was more significant in the geopolymer concrete with quartz aggregates. Crack formation also occurred in the concrete with expanded clay aggregates, caused by shrinkage of the geopolymer paste on cooling. Acoustic emission measurements proved to be a valuable tool to investigate processes during high temperature exposure. KW - Geopolymers KW - Spalling KW - Concrete KW - Acoustic emission KW - Heat exposure PY - 2016 U6 - https://doi.org/10.1617/s11527-016-0857-x SN - 1359-5997 SN - 1871-6873 VL - 49 IS - 12 SP - 5243 EP - 5254 PB - Springer AN - OPUS4-36907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 U6 - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -