TY - RPRT A1 - Stelling, Karen A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Böllinghaus, Thomas A1 - Rethmeier, Michael T1 - Laser Plasma Hybrid Welding of Austenitic Stainless Steels - Phenomena of Process Instability T2 - IIW Document N2 - Laser plasma hybrid welding has been proved to be a very stable hybrid welding process and welds of high quality can be produced, especially if high surface quality and low spattering is demanded such as in welding fabrication of high alloyed austenitic stainless steels. In particular cases, even though welds display high outer quality, X-ray examinations revealed weld defects which may range from low porosity to blowhole-like cavities. The phenomena and the main influencing parameters such as arc current, welding speed and focal point position are discussed. Parameter fields will be suggested for welding plates of different austenitic stainless steel grades with thicknesses ranging from 3 to 8 mm. The results are based on welding experiments carried out using a 4.4 kW diode pumped Nd:YAGlaser. Thus, also the influence of the feeding fibre diameter has been investigated and it was found that the resulting beam shape has a major effect on the welding performance. T2 - 60th IIW Annual Assembly CY - Dubrovnik, Croatia DA - 2007-07-01 KW - Laser KW - Plasma KW - Hybrid welding KW - Pores KW - Cavities KW - Root dropping KW - Austenitic steel PY - 2007 IS - IV-933-07 SP - 1 EP - 14 PB - International Institute of Welding CY - Paris AN - OPUS4-18677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -