TY - CONF A1 - Raute, J. A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen additiv gefertigter Ni-Basis-Bauteile T2 - DVS-Berichte N2 - Die vorliegende Untersuchung befasst sich mit dem Einfluss des Additive Manufacturing auf die Schweißeignung von Bauteilen aus Inconel 718. Hierfür wurden Proben mittels DED und L-PBF hergestellt und ihr Verhalten in Blindschweißversuchen anhand eines Vergleichs mit konventionellen Gussblechen untersucht. Im zweiten Schritt wurden die verschiedenen additiv hergestellten Proben mit dem Gussmaterial im I-Stoß sowie untereinander verschweißt. Als Schweißverfahren wurde für alle Proben das Elektronenstrahlschweißen angewandt. Zur Auswertung wurde anhand von Schliffen das Nahtprofil vermessen und die Proben auf Poren und Risse untersucht. Zusätzlich wurde die Dichte vermessen und eine Prüfung auf Oberflächenrisse durchgeführt. Das AM-Material zeigte dabei Unterschiede in Nahtform und Defektneigung im Vergleich zum Gusswerkstoff. Insbesondere die DED-proben neigten unter bestimmten Parameterkonstellationen verstärkt zu Porenbildung. Risse konnten nicht beobachtet werden. Trotz auftretender Nahtunregelmäßigkeiten wurde in den kombinierten AM-Schweißproben die Bewertungsgruppe C erreicht. Eine Prüfung der bestehenden Regelwerke zur Schweißnahtbewertung anhand der gewonnenen Erkenntnisse zu additiv gefertigten Proben im Elektronenstrahlschweißprozess zeigte keinen Ergänzungsbedarf. T2 - #additivefertigung: Metall in bestForm CY - Essen, Germany DA - 26.10.2022 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-202-7 VL - 383 SP - 81 EP - 92 PB - DVS-Media GmbH AN - OPUS4-56173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition JF - Material Testing 2022 N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 DO - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Prognose von Qualitätsmerkmalen durch Anwendung von KI-Methoden beim Directed 10 Energy Deposition JF - Schweißen und Schneiden N2 - Dieser Beitrag enthält die Ergebnisse eines im Rahmen der DVS Forschung entwickelten Ansatzes zur Qualitätssicherung im Directed Energy Deposition. Es basiert auf der Verarbeitung verschiedener während des Prozesses gesammelter Sensordaten unter Anwendung Künstlicher Neuronale Netze (KNN). So ließen sich die Qualitätsmerkmale Härte und Dichte auf der Datenbasis von 50 additiv gefertigten Probenwürfel mit einer Abweichung < 2 % vorhersagen. Des Weiteren wurde die Übertragbarkeit des KNN auf eine Schaufelgeometrie untersucht. Auch hier ließen sich Härte und Dichte hervorragend prognostizieren (Abweichung < 1,5 %), sodass der Ansatz als validiert betrachtet werden kann. KW - Kl KW - Directed Energy Depositio KW - Qualitätssicherung PY - 2022 SN - 0036-7184 VL - 74 IS - 10 SP - 672 EP - 679 PB - DVS Media CY - Düsseldorf AN - OPUS4-56284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zur Herstellung von Cu-Strukturen mittels Wire Electron Beam Additive Manufacturing T2 - DVS-Berichte N2 - Das Additive Manufacturing gewinnt zunehmend an Bedeutung für die Fertigung metallischer Bauteile im industriellen Umfeld. Hierbei wird zunehmend auch auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits in der Industrie etabliert sind und sich in der Regel durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich neben den bereits im großen Umfeld untersuchten Wire-DED-Verfahren auch eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die als Wire Electron Beam Additive Manufacturing bezeichnete Technologie besondere Vorteile gegenüber anderen, zumeist Laser- oder Lichtbogen-basierten DED-Prozessen. Das Verfahren bietet vor allem Potenzial für die Verarbeitung von hochleitfähigen, reflektierenden oder oxidationsgefährdeten Werkstoffen. Insbesondere für die Herstellung von Bauteilen aus Kupferlegierungen zeigt sich der Elektronenstrahl als besonders geeignet. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch übergreifende Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeiten. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel zweier Cu-Werkstoffe. Dabei werden ein korrosionsbeständiger Werkstoff aus dem maritimen Bereich sowie eine Bronze mit guten Verschleißeigenschaften aus dem Anlagenbau getestet. Über mehrstufige Testschweißungen wurden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. Hierfür wurden zunächst optimale Bereiche für den Energieeintrag anhand von Volumenenergie sowie mögliche Schweißgeschwindigkeiten untersucht. Anschließend wurde die Skalierbarkeit des Prozesses anhand von Strahlstrom und Drahtvorschub getestet. Als wesentliche Zielgrößen wurden dabei Spurgeometrie, Aufmischung und Härte herangezogen. Die Eignung der ermittelten Parameter wurde im letzten Schritt exemplarisch anhand einer additiven Testgeometrie in Form eines Zylinders nachgewiesen. T2 - DVS Congress 2022 Große Schweißtechnische Tagung DVS CAMPUS CY - Koblenz, Germany DA - 19.09.2022 KW - WEBAM KW - Electron beam KW - EBAM KW - Wire electron beam additive manufacturing PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 446 EP - 454 PB - DVS Media AN - OPUS4-56058 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Process monitoring KW - Quality assurance KW - Data preparation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547039 DO - https://doi.org/10.3390/app12083955 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Elektronenstrahl schweißt additiv gefertigte Nickel-Superlegierungen JF - MM Maschinenmarkt N2 - Die Additive Fertigung ist ideal zur Herstellung und Reparatur komplexer Bauteile aus hochfesten Werkstoffen. Doch es fehlen Fügeverfahren, die Heißrisse vermeiden. Die Lösung heißt Elektronenstrahl. KW - Additive Fertigung PY - 2021 SP - 1 EP - 6 AN - OPUS4-53979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Effects on crack formation of additive manufactured Inconel 939 sheets during electron beam welding JF - Vaccum N2 - The potential of additive manufacturing for processing precipitation hardened nickel-base superalloys, such as Inconel 939 is considerable, but in order to fully exploit this potential, fusion welding capabilities for additive parts need to be explored. Currently, it is uncertain how the different properties from the additive manufacturing process will affect the weldability of materials susceptible to hot cracking. Therefore, this work investigates the possibility of joining additively manufactured nickel-based superalloys using electron beam welding. In particular, the influence of process parameters on crack formation is investigated. In addition, hardness measurements are performed on cross-sections of the welds. It is shown that cracks at the seam head are enhanced by Welding speed and energy per unit length and correlate with the hardness of the weld metal. Cracking parallel to the weld area shows no clear dependence on the process variables that have been investigated, but is related to the hardness of the heat-affected zone. KW - Electron beam welding KW - Hot Cracks KW - Superalloy KW - Inconel 939 PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110649 SN - 0042-207X VL - 195 SP - 10649 PB - Elsevier Ltd. AN - OPUS4-53689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Schafner, A. A1 - Raute, J. A1 - Rethmeier, Michael T1 - Relative density prognosis for directed energy deposition with the help of artificial neural networks JF - Material Testing N2 - Additive manufacturing, and therefore directed energy deposition, is gaining more and more interest from industrial users. However, quality assurance for the components produced is still a challenge. Machine learning, especially using artificial neuronal networks, is a potential method for ensuring a high-quality standard. Based on process Parameters and monitoring data, part quality can be predicted. A further advantage is the ability to constantly learn and adopt to slight process changes. First tests using artificial neural networks focus on the prediction of track geometry. The results show that even a small data set is enough to provide high accuracy in the predictions. In this work, an artificial neural network for the predictive analysis of relative density in laser powder cladding has been developed. A central composite experimental design is used to generate 19 data sets. Input variables are laser power, feed rate and powder mass flow. Cubes are built up where density is considered as a target value. Several neural networks are trained and evaluated with these data sets. Different topologies and initial weights are considered. The best network reaches a confidence level of around 90 % for the prediction of relative density based on the process parame� ters. Finally, the optimization of the generalization performance is investigated. To this purpose, methods of variation in error limit as well as cross-validation are applied. In this way, density is predictable by an artificial neural network with an accuracy of about 95 %. KW - Directed energy deposition KW - Artificial neural network PY - 2021 DO - https://doi.org/10.1515/mt-2020-0004 SN - 0025-5300 VL - 63 IS - 1 SP - 41 EP - 47 PB - DE Gruyter CY - Berlin AN - OPUS4-52690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Data preparation KW - Quality assurance KW - Process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555063 DO - https://doi.org/10.3390/app12083955 SN - 2076-3417 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Jokisch, T. A1 - Marko, A. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen heißrissgefährdeter Nickelbasis-Superlegierungen mittels statistischer Versuchsplanung T2 - DVS CONGRESS 2020 - DVS-Berichte N2 - Nickelbasis-Superlegierungen sind seit vielen Jahren in unterschiedlichen Industrieanwendungen im Einsatz. Aufgrund der großen Heißrissneigung ist das Schweißen dieser Werkstoffe jedoch bei einer Vielzahl von Legierungen problematisch. Neue Arbeiten auf dem Gebiet zeigen, dass entgegen den gängigen Theorien auch reduzierte Schweißgeschwindigkeiten eine Tendenz zur Verringerung der Rissneigung aufweisen. Bisher existieren jedoch kaum Erkenntnisse zum Prozessverhalten in diesem Parameterbereich. In dieser Arbeit wird daher der Einfluss der relevanten Prozessparameter beim Elektronenstrahlschweißen (EBW) auf die Nahtgestalt im Bereich geringer Vorschubgeschwindigkeiten untersucht. Auf Grundlage der gewonnenen Erkenntnisse soll ein Ansatz zum rissfreien Fügen von komplexen Nickelbasis-Superlegierung gebildet werden. Die praktische Umsetzbarkeit wird abschließend anhand einiger Probeschweißungen an einem besonders heißrissgefährdeten Werkstoff demonstriert. Um fehlerfreie Verbindungen zu ermöglichen, wurden zunächst die relevanten Parameter für die Einstellung von Nahtbreite, Einschweißtiefe, Aspektverhältnis und Nahtfläche anhand einer Versuchsreihe mit 17 Blindschweißungen auf einer 12 mm dicken Platte aus Inconel 718 bestimmt. Die genaue Beschreibung des Einflusses der als signifikant identifizierten Faktoren erfolgte über die Anwendung einer Regressions- und Varianzanalyse. Die Ergebnisse zeigen, dass die Einschweißtiefe, die Nahtbreite, das Aspektverhältnis sowie die Nahtfläche vorrangig über den Strahlstrom, die Fokuslage sowie den Vorschub beeinflusst werden können. Auf Basis der gebildeten statistischen Modelle erfolgte die Vorhersage geeigneter Parameter für eine finale Versuchsreihe. Die abschließenden Demonstratorschweißungen wurden exemplarisch an einer Nickelbasis-Gusslegierung mit besonders hohem Ausscheidungsphasenanteil durchgeführt. Hierfür wurden Schweißungen im I- Stoß an 6,5 mm und 10 mm dicken Blechen ausgeführt. Trotz der mangelnden Schweißeignung und dem hohen Anteil an Ausscheidungsphase des Werkstoffes, zeigten sich nach Optimierung der Prozessparameter keine Heißrisse mehr. T2 - DVS Congress 2020 CY - Online meeting DA - 14.09.2020 KW - Heißrisse KW - Nickelbasis-Superlegierungen KW - Elektonenstrahlschweißen KW - Alloy 247 PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 17 EP - 22 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Marko, A. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Influence of electron beam welding parameters on the weld seam geometry of Inconel718 at low feed rates N2 - Ni-based superalloys are well established in various industrial applications, because of their excellentmechanical properties and corrosion resistance at high temperatures. Despite the high development stage anda common industrial use of these alloys, hot cracking remains a major challenge limiting the weldability ofthe materials. As commonly known, the hot cracking susceptibility during welding increases with the amountof precipitation phases. Hence, a large amount of highstrength Ni-Alloys is rated as non-weldable. A newapproach based on electron beam welding at low feed rates shows great potential for reducing the hotcracking tendency of precipitation-hardened alloys. However, geometry and properties of the weld seamdiffer significantly in comparison to the common process range for practical uses. The aim of this study is toinvestigate the influence of welding parameters on the seam geometry at low feed rates between 1 mm/s and10 mm/s. For this purpose, 25 bead on plate welds on a 12 mm thick sheet made of Inconel 718 are carriedout. First, the relevant parameters are identified by performing a screening. Then the effects discovered arefurther studied by using a central composite design. The results show a significant difference between theanalyzed weld seam geometry in comparison to the well-known appearance of electron beam welded seams. KW - Electron beam welding KW - Ni-based superalloy KW - Inconel 718 KW - Low feed rates KW - Seam geometry KW - Hot crack PY - 2020 DO - https://doi.org/10.3139/120.111614 SN - 0025-5300 VL - 62 IS - 12 SP - 1221 EP - 1227 PB - Carl Hanser Verlag GmbH & Co. KG CY - München AN - OPUS4-52016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Raute, J. A1 - Linaschke, D. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Porosity of LMD manufactured parts analyzed by Archmimedes method and CT JF - Materials Testing N2 - Pores in additive manufactured metal parts occur due to different reasons and affect the part Quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing Parameters on the Formation of pores in parts built by laser metal Deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The Investigation Shows that CT is able to identify different kinds of pores and to give further Information about their distribution. The identification of some pores as well as their shape can be dependent on the Parameter Setting of the Analysis tool. Due to limited measurement Resolution, CT is not able to identify correctly pores with Diameters smaller than 0.1 mm, which leads to a false decrease on Overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other Kinds of holes like internal cracks or lack of Fusion, but it delivered a proper value for Overall porosity. The method was able to provide suitable data for the statistical Evaluation with design of Experiments, which revealed significant Parameters ont he Formation of pores in LMD. KW - Laser metal deposition KW - Additive manufacturing KW - Density measurement KW - Porosity KW - Design of experiments PY - 2018 DO - https://doi.org/10.3139/120.111232 SN - 0025-5300 VL - 60 IS - 11 SP - 1055 EP - 1060 PB - Hanser CY - Berlin AN - OPUS4-47094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kampffmeyer, D. A1 - Wolters, M. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Laserstrahlauftragschweißen – Einfluss von Schutzgasgemischen auf die Bauteilqualität JF - DVS-Berichte: Band 389 N2 - Im Additive Manufacturing Verfahren Directed Energy Deposition (DED) wird bei der Verarbeitung von Werkzeugstahl in der Regel reines Argon als Schutzgas verwendet. Dabei kann die Verwendung von speziellen Schutzgasgemischen, auch bei geringen Anteilen zugemischter Gase, durchaus die Bauteilqualität positiv beeinflussen. In Vorarbeiten der Messer SE & Co. KGaA zeigte ein gewisser Sauerstoffanteil im Schutzgas die Tendenz, den Flankenwinkel von Schweißspuren beim DED zu verbessern. In der vorliegenden Studie wurde daher detailliert untersucht in wie weit unterschiedliche Schutzgasgemische einen Einfluss auf die Qualität sowie die geometrischen Eigenschaften der additiv gefertigten Strukturen des Werkzeugstahls 1.2709 beim Laser-DED ausüben. Es erfolgten zunächst Testschweißungen in Form von Einzelspuren mit unterschiedlichen Gemischen aus dem Basisschutzgas Argon mit geringen Anteilen verschiedener Gase. Dabei wurde der Einfluss der Zusätze auf die Spurgeometrie und Aufbauqualität untersucht. Auf Basis dieser Vorversuche wurde eine Auswahl vielversprechender Gasgemische getroffen und Detailuntersuchungen in Form von Spuren, Flächen und Quadern unter Zugabe verschiedener Mengen an Zusätzen durchgeführt. Zur Bewertung des Einflusses der Schutzgasbeimengungen wurden der Flankenwinkel, die Porosität und das Gefüge der Proben anhand metallografischer Schliffe untersucht. Es zeigte sich, dass eine Zugabe von geringen Anteilen an Zusätzen zunächst zu einer Vergrößerung des Flankenwinkels im Vergleich zu reinem Argon führt. Mit steigendem Anteil der Gase nimmt dieser Winkel jedoch ab. So kann je nach Menge des zugesetzten Gases eine individuelle Benetzung des aufgetragenen Materials an der Oberfläche erreicht werden. Auch die Porosität ließ sich durch Schutzgasgemische beeinflussen und zeigt ein abweichendes Verhalten im Vergleich zu reinem Argon. T2 - DVS Congress 2023 Große Schweißtechnische Tagung DVS CAMPUS CY - Essen, Germany DA - 11.09.2023 KW - Laser-Pulver-Auftragschweißen KW - DED-LB KW - Schutzgas KW - Additive Fertigung PY - 2023 SN - 978-3-96144-230-0 SP - 505 EP - 511 PB - DVS-Media AN - OPUS4-58585 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 T2 - DVS-Berichte: Band 385 N2 - Hochfeste Nickelbasislegierungen wie Inconel 939 spielen eine wesentliche Rolle im modernen Turbinenbau. Additive Fertigungstechnologien eröffnen hierbei neue Möglichkeiten für die Verarbeitung, jedoch fehlen verlässliche Fügeprozesse für die Absicherung der additiven Prozesskette im Bereich Neuteilfertigung und Instandsetzung. Insbesondere Heißrisse stellen eine große Herausforderung an die Fügetechnik. Die vorliegende Untersuchung befasst sich daher mit dem Verhalten von additiv gefertigten Blechen aus Inconel 939 beim Elektronenstrahlschweißen. Es werden grundlegende Zusammenhänge zwischen Prozessparametern, Härte und Rissneigung betrachtet und Ansätze für eine Optimierung auf Basis statistischer Versuchsplanung aufgezeigt. Hierbei erfolgt eine Einteilung der Risse nach bestimmten Nahtbereichen. Risse am Nahtkopf können durch die Faktoren Vorschub und Streckenenergie sowie die Härte des Schweißgutes beeinflusst werden. Risse im Bereich der parallelen Nahtflanken stehen hingegen im Zusammenhang mit der Härte der Wärmeinflusszone. Ein abschließender Vergleich der angepassten Parameter mit der Ausgangssituation zeigt, dass durch Anwendung der statistischen Optimierung eine deutliche Reduzierung der Rissneigung erreicht werden kann. T2 - 42. Assistentenseminar Fügetechnik CY - Beverungen, Germany DA - 06.10.2021 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-210-2 VL - 385 SP - 1 EP - 8 PB - DVS Media GmbH AN - OPUS4-57320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Wire Electron Beam Additive Manufacturing von niedriglegierten Zinnbronzen – Erreichbare Bauteileigenschaften und Prozessmerkmale T2 - Kupfer-Symposium 2023 Vortragsband N2 - Die Additive Fertigung gewinnt zunehmend an Bedeutung für die Verarbeitung von Kupferwerkstoffen im industriellen Umfeld. Hierbei wird verstärkt auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits aus der Schweißtechnik bekannt sind und sich zumeist durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich unter den drahtbasierten Verfahren der Directed-Energy-Deposition (DED) eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die Technologie Wire Electron Beam Additive Manufacturing (DED-EB) besondere Vorteile gegenüber anderen DED-Prozessen für die Anwendung an Kupfer. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeit- en. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel der Legierung CuSn1MnSi. Über mehrstufige Testschweißungen werden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. An verschiedenen additiv gefertigten Probekörpern werden anschließend Kennwerte für Aufbaurate, Härte, Mikrostruktur, Oberflächenqualität sowie mechanische Festigkeitswerte ermittelt. Es zeigt sich, dass das die durch DED-EB hergestellten Proben, trotz des groben Gefüges sowie der thermischen Belastung im Aufbauprozess, in ihren Eigenschaften gut mit den Spezifikationen des Ausgangsmaterials übereinstimmen. T2 - Kupfersymposium 2023 CY - Jena, Germany DA - 29.11.2023 KW - Wire Electron Beam Additive Manufacturing KW - DED-EB KW - CuSn1 KW - Additive Fertigung PY - 2023 SN - 978-3-910411-03-6 SP - 28 EP - 33 PB - Kupferverband e. V. AN - OPUS4-59118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze JF - metals N2 - In recent years, in addition to the commonly known wire-based processes of Directed Energy Deposition using lasers, a process variant using the electron beam has also developed to industrial market maturity. The process variant offers particular potential for processing highly conductive, reflective or oxidation-prone materials. However, for industrial usage, there is a lack of comprehensive data on performance, limitations and possible applications. The present study bridges the gap using the example of the high-strength aluminum bronze CuAl8Ni6. Multi-stage test welds are used to determine the limitations of the process and to draw conclusions about the suitability of the parameters for additive manufacturing. For this purpose, optimal ranges for energy input, possible welding speeds and the scalability of the process were investigated. Finally, additive test specimens in the form of cylinders and walls are produced, and the hardness profile, microstructure and mechanical properties are investigated. It is found that the material CuAl8Ni6 can be well processed using wire electron beam additive manufacturing. The microstructure is similar to a cast structure, the hardness profile over the height of the specimens is constant, and the tensile strength and elongation at fracture values achieved the specification of the raw material. KW - Wire electron beam additive manufacturing KW - Aluminum bronze KW - Wire-based additive manufacturing KW - EBAM KW - DED-EB PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580890 DO - https://doi.org/10.3390/met13081416 VL - 13 IS - 8 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -