TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Reinsch, Stefan T1 - Sintering and foaming of barium silicate glass powders N2 - The manufacture of sintered glasses and glass-ceramics, glass Matrix composites and glass-bounded ceramics or pastes is often affected by gas bubble formation. Against this background, we studied sintering and foaming of barium silicate glass powders used as SOFC sealants using different powder milling scenarios. Sintering was measured by means of heating microscopy backed up by XPD, DTA, Vacuum Hot Extraction (VHE) and optical and electron microscopy. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the powder compacts were uniaxially pressed and sintered in air, the milling environment significantly affected foaming. The strength of this effect increased in the order Ar >> N2 < air < CO2. Conformingly, VHE studies revealed that the pores of aerated samples predominantly encapsulated CO2, even for powders milled in Ar and N2. Results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. Foaming could be substantially reduced by milling in water and 10 wt% HCl. T2 - 12th Pacific Rim Conference on Ceramic and Glass Technology CY - Waikoloa, Hawaii, USA DA - 21.5.2017 KW - Sintering KW - Gas bubble formation KW - Foaming PY - 2017 AN - OPUS4-44220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Körner, S. T1 - Dissolution and reprecipitation of silver in sintering silver-glass dispersions N2 - Electric contacts based on silver-glass dispersions are key components in optoelectronic microsystems and control modules for medical, information & communication and energy technology in our networked society. Driven by the complexity of modern production processes and ever shorter time-to-market requirements, the fast and specific development of tailored silver-glass dispersions has become a bottleneck of technology development. Nevertheless, the underlying mechanisms of silver dissolution, transport, and reprecipitation, and the resulting micro structure evolution during firing are poorly understood. The broad literature on the precipitation of colloidal silver particles and the related processes of silver dissolution and diffusion mostly refer to very small volume fractions of silver. Transferring these results to the sintering of glass-containing silver dispersions, is therefore highly questionable. In this case, silver dissolution, electrical contact between silver particles, transport and reprecipitation take place under special conditions. This includes short diffusion lengths (particle size < 10 μm), the presence of three-phase contacts silver - glass - sintering atmosphere, as well as silver reprecipitation at the sintering contacts as the driving force of silver transport. Here, a dynamic balance of the silver concentration can be expected to result from the ratio between silver dissolution and reprecipitation. The aim of the project is to gain basic insight into the mechanisms of dissolution, transport and reprecipitation of silver in sintering silver glass dispersions. In this context, the main focus is on gaining basic knowledge about the dissolution of metallic silver in low melting oxide glasses as the limiting factor of the sintering of silver-glass composites. In particular, we will strive to gain insight into the effect of the oxygen content of the sintering atmosphere, of the oxygen dissolved in the silver particles, of silver oxide on the surface of the silver powder, of the electric contact between the silver particles, as well as the basicity of the glass. Furthermore, we strive for insights into the silver mobility and the silver concentration that can be attained (silver solubility) in oxide glasses with a low melting point. Summing up all these aspects, a closed explanatory model for silver dissolution, transport and reprecipitation during the sintering of glass silver dispersions will be introduced. T2 - DFG Begutachtungskolloquium (PAK 949/1 und PAK 950/1) CY - Bonn, Germany DA - 07.03.2017 KW - Sintering KW - Silver KW - Glass KW - Solubility KW - Reprecipitation PY - 2017 AN - OPUS4-44227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Körner, S. T1 - Dissolution and reprecipitation of silver in sintering silver-glass dispersions N2 - Electric contacts based on silver-glass dispersions are key components in optoelectronic microsystems and control modules for medical, information & communication and energy technology in our networked society. Driven by the complexity of modern production processes and ever shorter time-to-market requirements, the fast and specific development of tailored silver-glass dispersions has become a bottleneck of technology development. Nevertheless, the underlying mechanisms of silver dissolution, transport, and reprecipitation, and the resulting micro structure evolution during firing are poorly understood. The broad literature on the precipitation of colloidal silver particles and the related processes of silver dissolution and diffusion mostly refer to very small volume fractions of silver. Transferring these results to the sintering of glass-containing silver dispersions, is therefore highly questionable. In this case, silver dissolution, electrical contact between silver particles, transport and reprecipitation take place under special conditions. This includes short diffusion lengths (particle size < 10 μm), the presence of three-phase contacts silver - glass - sintering atmosphere, as well as silver reprecipitation at the sintering contacts as the driving force of silver transport. Here, a dynamic balance of the silver concentration can be expected to result from the ratio between silver dissolution and reprecipitation. The aim of the project is to gain basic insight into the mechanisms of dissolution, transport and reprecipitation of silver in sintering silver glass dispersions. In this context, the main focus is on gaining basic knowledge about the dissolution of metallic silver in low melting oxide glasses as the limiting factor of the sintering of silver-glass composites. In particular, we will strive to gain insight into the effect of the oxygen content of the sintering atmosphere, of the oxygen dissolved in the silver particles, of silver oxide on the surface of the silver powder, of the electric contact between the silver particles, as well as the basicity of the glass. Furthermore, we strive for insights into the silver mobility and the silver concentration that can be attained (silver solubility) in oxide glasses with a low melting point. Summing up all these aspects, a closed explanatory model for silver dissolution, transport and reprecipitation during the sintering of glass silver dispersions will be introduced. T2 - DFG Begutachtungskolloquium (PAK 949/1 und PAK 950/1) CY - Bonn, Germany DA - 07.03.2017 KW - Sintering KW - Silver KW - Glass KW - Solubility KW - Reprecipitation PY - 2017 AN - OPUS4-44228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -