TY - CONF A1 - Müller, Ralf A1 - Gaber, Martin A1 - Gottschling, Peter T1 - Volatile concentration and diffusivity determined by vacuum hot extraction T2 - XX. International Congress on Glass CY - Kyoto, Japan DA - 2004-09-26 KW - Silicate glass KW - Water KW - Hydrogen KW - Degassing KW - Diffusion coefficient PY - 2004 SP - 6 pages PB - Ceramic Society of Japan CY - Tokio AN - OPUS4-6951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Gottschling, Peter A1 - Gaber, Martin T1 - Water concentration and diffusivity in silicates obtained by vacuum extraction KW - Silicate glasses and crystals KW - Water KW - Degassing KW - Diffusion coefficient PY - 2005 SN - 0927-4472 VL - 78 IS - 2 SP - 76 EP - 89 PB - Elsevier CY - Amsterdam AN - OPUS4-11836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behrens, H. A1 - Bauer, U. A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Müller, Ralf A1 - Deubener, J. T1 - Structural relaxation mechanisms in hydrous sodium borosilicate glasses N2 - Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses. KW - Borosilicate glass KW - Water KW - Relaxation KW - Internal friction KW - Glass transition PY - 2018 U6 - https://doi.org/10.1016/j.jnoncrysol.2018.05.025 VL - 497 SP - 30 EP - 39 PB - Elsevier B.V. AN - OPUS4-45608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -