TY - CONF A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Impact of structure and relaxation on fatigue and micromechanical properties of oxide glasses: the role of volatiles and bonding state N2 - As subcritical crack growth (SCCG) can reduce tensile strength of glasses by many orders of magnitude, the potential for improvement of fatigue behaviour is most intriguing in developing ultra-strong glasses. An essential bottleneck is the basic understanding of the numerous interplaying pressure-, temperature- and water-affected relaxation phenomena at the crack tip and related toughening strategies. Therefore, the present project aims to advance the basic understanding of structural relaxation effects and local properties caused by increased water concentration and tensile stresses at the crack tip as they are a key for structural toughening designs to develop SCCG-free glasses and glass surfaces. Our first studies give clear evidence that glass structure and dynamics is strongly modified upon hydration of glasses. These changes are highly related to the nature of network formers but are affected as well by the counter ions (network modifier). Results of the 1st project part suggest that structural relaxation below glass transition temperature, i.e. overlapping of short-range (beta) and long-range (alpha) interactions can contribute to SCCG in water-free environments and that structurally dissolved water in the glasses can have decisive impact on this effect. In the 2nd project stage specific glasses compositions will be investigated to gain an improved understanding on the relation of sub-Tg relaxation and inert SCCG as well as to shed light to the related effects of dissolved water and its speciation. These glasses cover a broader range of different glass topologies and binding partners, whereby the coupling of alpha and beta relaxations is varied systematically by alkali-, alkaline earth ions and water species concentrations. Preparation of hydrous glasses (up to 8 wt% water) will be performed by high pressure syntheses. Structure will be resolved by NMR, Raman and IR spectroscopy while structural relaxation is accessed in the temperature and frequency domain using dynamic mechanical spectroscopy and ultrasonic damping. We will focus on measurements of inert SCCG (region III) conducting experiments in vacuum and dry gas atmospheres using indentation techniques and stressing of glass specimens in DCB geometry. Experimental data on SCCG will be provided to SPP groups, which deals with fatigue in metallic glasses and vice versa we will test theoretical predictions of ab-initio simulations of partner within SPP 1594 in order to quantify the effect of water on the crack tip. In summa topological factors controlling the subcritical crack growth with respect to water will be identified from which structural toughening designs for highly fatigue resistant-glasses can be derived. N2 - Subkritisches Risswachstum (SCCG) kann die Zugfestigkeit von Glas um viele Größenordnungen erniedrigen. Deshalb birgt die Verbesserung des Ermüdungsverhaltens ein hohes Potential für das topologische Design hochfester Gläser. Ein diesbezüglicher Engpass ist das Verständnis der zahlreichen interagierenden druck-, temperatur- und wasserbeeinflussten Relaxationsphänomene an der Rissspitze und hieraus abgeleitete Verstärkungsstrategien. Ziel des Projekts ist es daher, das grundlegende Verständnis der Effekte, die infolge erhöhter Wasserkonzentrationen und Zugspannungen an der Rissspitze entstehen, zu vertiefen, da sie als ein Schlüssel für künftige strukturelle Designprinzipien zur Entwicklung schadenstoleranter Gläser und Glasoberflächen gelten. Unsere ersten Studien zeigen, dass die Struktur und Dynamik von Gläsern nach einer Hydration stark verändert sind. Diese Modifikationen sind mit der Art der Netzwerkbildner stark verknüpft, aber auch von ihren Gegenionen (Netzwerkwandler) abhängig. Die Ergebnisse des ersten Projektabschnitts legen nahe, dass strukturelle Relaxation unterhalb der Glasübergangstemperatur, d. h. ein Überlappen von kurz-reichweitigen (beta) und lang-reichweitigen (alpha) Wechselwirkungen, zum subkritisches Risswachstum in wasserfreien Umgebungen beitragen kann und, dass strukturell gelöstes Wasser in Gläsern sich entscheidend auf diese Effekt auswirken kann. Im zweiten Projektabschnitt werden daher spezielle Glaszusammensetzungen untersucht, die zu einem besseren Verständnis der Verbindung zwischen sub-Tg Relaxation und SCCG führen aber auch den Einfluss von gelöstem Wasser und dessen Speziation näher beleuchten. Diese Gläser weisen eine großen Breite an verschiedenen Topologien und Bindungspartnern auf, wobei die Kopplung von alpha und beta Relaxation durch Veränderungen in den Gehalten von Alkali-, Erdalkalionen und der Wasserspezies systematisch variiert wird. Die Präparation hydratisierter Gläser (bis zu 8 Ma.%) erfolgt mittels Hochdrucksynthesen. Die Glasstruktur wird durch NMR, Raman und IR Spektroskopie aufgeklärt während die Strukturrelaxation anhand dynamische mechanische Spektroskopie und Ultraschalldämpfung im Temperatur- und Frequenzraum erfasst wird. Im Fokus werden Messungen des inerten subkritischen Risswachstums (Region III) stehen, die Indenter-Experimente im Vakuum und trockenen Gasatmosphären sowie Verspannen von Glasproben in DCB Geometrie beinhalten. Experimentelle SCCG Daten werden Gruppen im Schwerpunktprogramm zur Verfügung stellen, die sich mit Ermüdung in metallischen Gläsern beschäftigen und im Gegenzug werden wir theoretische Vorhersagen aus ab initio Simulationen der Partner im SPP 1594 testen, um den Einfluss von Wasser auf die mechanischen Eigenschaften an der Rissspitze und deren Einfluss auf SCCG zu quantifizieren. In summa werden topologische Faktoren bezüglich Wasser, die SCCG kontrollieren, identifiziert, um daraus Designprinzipien für hoch ermüdungsresistente Gläser abzuleiten. T2 - Kolloquium des DFG-PP 1594 CY - Jena, Germany DA - 17.9.2015 KW - Glass KW - Fatigue PY - 2015 AN - OPUS4-38334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Gaber, Martin A1 - Welter, T. A1 - Deubener, J. T1 - Hydrogen permeability of glass measured by VHE-MS powder methods N2 - Glasses are can serve as exceptionally tight hydrogen barriers e.g. used for hydrogen storage in micro glass containers or cover glasses in micro electronic systems. Respective glass development, however, requires precise measurements of minimal hydrogen permeability, PH2. Recent studies showed that PH2 can be measured down to 2 10-21 mol s-1 Pa-1m-1 by means of Vacuum Hot Extraction (VHE) powder methods [1]. In this respect the isothermal gas release from glass powder particles is fitted in terms of classical diffusion models assuming spherical particles of uniform size thus obtaining the hydrogen diffusion coefficient, DH2. PH2 is then given by D H2 × S H2, where hydrogen solubility, SH2, is obtained from VHE studies of glass powders exposed to hydrogen atmosphere for different exposure time and hydrogen pressure. Measurements of minimal values of hydrogen permeability, however, require a careful evaluation and error discussion of this method. Against that background, we modeled hydrogen degassing during heating and subsequent isothermal annealing of glass powder particles of different shape and particle size distribution by means of COMSOL Multiphysics® [2] and verified related effects on DH2 obtained by the VHE powder method. T2 - SGT Centenary Conference, & ESG 2016 CY - Sheffield, UK DA - 4.9.2016 KW - Glass KW - Hydrogen KW - Permeability KW - Storage PY - 2016 AN - OPUS4-38307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Körner, S. T1 - Dissolution and reprecipitation of silver in sintering silver-glass dispersions N2 - Electric contacts based on silver-glass dispersions are key components in optoelectronic microsystems and control modules for medical, information & communication and energy technology in our networked society. Driven by the complexity of modern production processes and ever shorter time-to-market requirements, the fast and specific development of tailored silver-glass dispersions has become a bottleneck of technology development. Nevertheless, the underlying mechanisms of silver dissolution, transport, and reprecipitation, and the resulting micro structure evolution during firing are poorly understood. The broad literature on the precipitation of colloidal silver particles and the related processes of silver dissolution and diffusion mostly refer to very small volume fractions of silver. Transferring these results to the sintering of glass-containing silver dispersions, is therefore highly questionable. In this case, silver dissolution, electrical contact between silver particles, transport and reprecipitation take place under special conditions. This includes short diffusion lengths (particle size < 10 μm), the presence of three-phase contacts silver - glass - sintering atmosphere, as well as silver reprecipitation at the sintering contacts as the driving force of silver transport. Here, a dynamic balance of the silver concentration can be expected to result from the ratio between silver dissolution and reprecipitation. The aim of the project is to gain basic insight into the mechanisms of dissolution, transport and reprecipitation of silver in sintering silver glass dispersions. In this context, the main focus is on gaining basic knowledge about the dissolution of metallic silver in low melting oxide glasses as the limiting factor of the sintering of silver-glass composites. In particular, we will strive to gain insight into the effect of the oxygen content of the sintering atmosphere, of the oxygen dissolved in the silver particles, of silver oxide on the surface of the silver powder, of the electric contact between the silver particles, as well as the basicity of the glass. Furthermore, we strive for insights into the silver mobility and the silver concentration that can be attained (silver solubility) in oxide glasses with a low melting point. Summing up all these aspects, a closed explanatory model for silver dissolution, transport and reprecipitation during the sintering of glass silver dispersions will be introduced. T2 - DFG Begutachtungskolloquium (PAK 949/1 und PAK 950/1) CY - Bonn, Germany DA - 07.03.2017 KW - Sintering KW - Silver KW - Glass KW - Solubility KW - Reprecipitation PY - 2017 AN - OPUS4-44228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -