TY - JOUR A1 - Müller, Ralf A1 - Gaber, Martin A1 - Gottschling, Peter T1 - Water release and crystallisation of glass powders T2 - Physics and Chemistry of Glasses / VII Symposium on Crystallization in Glasses in Liquids CY - Sheffield, England, UK DA - 2004-07-06 PY - 2004 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 45 IS - 2 SP - 1 EP - 5 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-6237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chladek, J. A1 - Müller, Ralf A1 - Weh, Lothar A1 - Reinsch, Stefan T1 - Viscous flow and surface crystallization caused by Vickers indentation PY - 2004 SN - 0927-4472 VL - 77 IS - 1 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-6235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Eberstein, Markus A1 - Reinsch, Stefan A1 - Schiller, Wolfgang Arno A1 - Deubener, J. A1 - Thiel, A. T1 - Effect of rigid inclusions on sintering of low temperature co-fired ceramics KW - Sintering KW - Glass Matrix Composites KW - Rigid Inclusion KW - Effective Viscosity KW - Kinetic Modelling KW - LTCC PY - 2007 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 48 IS - 4 SP - 259 EP - 266 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-16211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Gaber, Martin A1 - Müller, Ralf A1 - Schiller, Wolfgang Arno T1 - Rate controlled debindering of glass ceramic composites N2 - Green compacts of ceramics, glass ceramic composites and sinter glass ceramics contain different amounts of organic materials added as pressing aids or binders. Before sintering, these organics have to burn out completely. In oxidising atmospheres, the debindering process is mostly exothermic and therefore difficult to control. This uncontrolled heat production due to locally enhanced debindering and respective gas release may cause damages in the green compact microstructure. Therefore, debindering is usually operated with very low heating rates (< 3 K/min) which requires long processing times of many hours. In this paper, we will show that it is possible to reduce the processing time for debindering dramatically by using the decomposition rate of the organic binder, detected by the weight loss of the sample, as a control factor of the furnace. T2 - 9th ESG (European Society of Glass) Conference with the Annual Meeting of the ICG Glass - "The challenge for the 21st century" CY - Trencin, Slovakia DA - 2008-06-22 KW - Debindering KW - Thermo gravimetry KW - Glass ceramic composites PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 583 EP - 586 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-17840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Apel, E. A1 - Deubener, J. A1 - Bernard, A. A1 - Müller, Ralf A1 - Kappert, H. A1 - Rheinberger, V. A1 - Höland, W. T1 - Phenomena and mechanisms of crack propagation in glass-ceramics N2 - Lithium disilicate, leucite and apatite glass-ceramics have become state-of-the-art framework materials in the fabrication of all-ceramic dental restorative materials. The goal of this study was to examine the crack propagation behaviour of these three known glass-ceramic materials after they have been subjected to Vickers indentation and to characterize their crack opening profiles (δmeas vs. (a-r)). For this purpose, various methods of optical examination were employed. Optical microscopy investigations were performed to examine the crack phenomena at a macroscopic level, while high-resolution techniques, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to investigate the crack phenomena at a microscopic level. The crack patterns of the three glass-ceramics vary from fairly straightforward to more complex, depending on the amount of residual glass matrix present in the material. The high-strength lithium disilicate crystals feature a high degree of crosslinking, thereby preventing crack propagation. In this material, the crack propagates only through the residual glass phase, which constitutes 30%–40% by volume. Having a high glass content of more than 65% by volume, the leucite and apatite glass-ceramics show far more complex crack patterns. Cracks in the leucite glass-ceramic propagate through both the glass and crystal phase. The apatite glass-ceramic shows a similar crack behaviour as an inorganic–organic composite material containing nanoscale fillers, which are pulled out in the surroundings of the crack tip. The observed crack behaviour and the calculated View the MathML source values of the three types of glass-ceramics were compared to the Kkic values determined according to the SEVNB method. KW - Glass KW - Viscosity KW - Water content PY - 2008 DO - https://doi.org/10.1016/j.jmbbm.2007.11.005 SN - 1751-6161 VL - 1 IS - 4 SP - 313 EP - 325 PB - Elsevier CY - Amsterdam AN - OPUS4-18308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf A1 - Zietka, S. A1 - Reinsch, Stefan T1 - Kinetic fragility of hydrous soda-lime-silica glasses N2 - The effect of hydration on the kinetic fragility of soda-lime-silica glasses was investigated by viscometry in the glass transition range. Water-bearing glasses were prepared from industrial float glass (FG) and a ternary model glass (NCS = 16Na2O 10CaO 74SiO2 in mol%) by bubbling steam through the melt at 1480 °C and up to 7 bar. Additionally, a sodium borosilicate glass (NBS = 16Na2O 10B2O3 74SiO2 in mol%) was hydrated under equal conditions. As detected by infrared spectroscopy water dissolves in the glasses exclusively as OH-groups. The hydration resulted in a total water content CW up to ~ 0.2 wt% for FG, NCS and NBS glasses. Kinetic fragility, expressed by the steepness index m, was determined from the temperature dependence of η at the glass transition. Viscosity data from previous studies on hydrous float glasses (CW > 1 wt%) were surveyed together with literature data on the (H2O)–Na2O–CaO–SiO2, (H2O)–Na2O–SiO2 and (H2O)–SiO2 systems to expand the range of water concentration and bulk composition. We could demonstrate that m decreases for all glasses although water is dissolved as OH and should depolymerize the network. An empirical equation of the general type m = a - b logCW where a, b are fitting parameters, enables m to be predicted, for each glass series as function of the water content CW. The enlarged data base shows that the parameter B of the Arrhenius viscosity-temperature relation decreases much stronger than the isokom temperature at the glass transition. KW - Soda-lime-silica KW - Fragility KW - Viscosity KW - Water in glass PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2008.04.021 SN - 0022-3093 VL - 354 IS - 42-44 SP - 4713 EP - 4718 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-18187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Eberstein, Markus A1 - Deubener, J. A1 - Thiel, A. A1 - Schiller, Wolfgang Arno T1 - Effects of dispersed Al2O3 particles on sintering of LTCC N2 - The sintering of Low Temperature Co-fired Ceramics prepared from alumoborosilicate glass- and Al2O3 powders of similar small particle size was studied by dilatometry, heating microscopy, microstructure analysis, glass- and effective viscosity measurements. The steric effect of Al3O3 inclusions was studied using a gnon-reactiveh model composite. With increasing Al3O3 volume fraction (Φ ≤ 0.45), sintering decelerates and its final stage shifts to higher temperature. The attainable shrinkage is reduced as Al2O3 particle clusters bearing residual pores become more frequent. The kinetics of sintering could be described formally superposing the weighed contributions of differentially sized and randomly composed glass-crystal particle clusters and assuming a sintering rate controlled by the effective matrix viscosity, which increases with Φ and with progressive wetting of Al2O3 particles during densification. The "reactive" model composite shows significant dissolution of Al2O3 into the glass, which has two opposed effects on sintering: reducing Φ and increasing glass viscosity. For the present case (Φ = 0.25), the latter effect dominates and sintering is retarded by Al2O3 dissolution. Crystallization of wollastonite starts after full densification. Dissolution of Al2O3 was found to promote the subsequent growth of anorthite. KW - LTCC KW - Glass matrix composites KW - Al2O3-inclusions KW - Sintering kinetics PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 375 EP - 380 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-18441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Nascimento, M.L.F. A1 - Müller, Ralf A1 - Zanotto, E. D. T1 - Crystal growth kinetics in cordierite and diopside glasses in wide temperature ranges N2 - We measured and collected literature data for the crystal growth rate, u(T), of µ-cordierite (2MgO · 2Al2O3 · 5SiO2) and diopside (CaO · MgO · 2SiO2) in their isochemical glass forming melts. The data cover exceptionally wide temperature ranges, i.e. 800–1350 °C for cordierite and 750–1378 °C for diopside. The maximum of u(T) occurs at about 1250 °C for both systems. A smooth shoulder is observed around 970 °C for µ-cordierite. Based on measured and collected viscosity data, we fitted u(T) using standard crystal growth models. For diopside, the experimental u(T) fits well to the 2D surface nucleation model and also to the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning. For cordierite, these two models also describe the experimental growth rates. However, the best fittings of u(T) including the observed shoulder, were attained for a combined mechanism, assuming that the melt/crystal interface growing from screw dislocations is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at a temperature around the shoulder. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these two systems, from the melting point Tm down to about Tg, with no sign of a breakdown of the Stokes–Einstein/Eyring equation. KW - Crystal growth KW - Oxide glasses KW - Silicates KW - Kristallwachstumsgeschwindigkeit KW - Kinetik KW - Silikatgläser PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2008.09.007 SN - 0022-3093 VL - 354 IS - 52-54 SP - 5386 EP - 5394 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-18383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietka, S. A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - Glass transition and viscosity of hydrated silica glasses N2 - The viscosity of silica glasses with different water contents was measured by penetration of sapphire microspheres in the range from 1012-1014·7 Pas at ambient pressure. Commercial silica glasses were used together with hydrous silica glasses, which were prepared by melting glass powder plus water in an internally heated pressure vessel at 2-3 kbar and 1350-1450°C. The temperature dependence of the viscosity of silica glasses with total water contents Cw of 5·4×10-4, 7·0×10-4, 1·00×10-2, and 1·55×10-2(Cw in mass fractions) can be described by Arrhenius equations. From the results, the linear dependence of the T12 isokom (K) with the logarithm of the water content was determined as T12=192-409 logCw. The analysis of the compositional dependence of the T12 isokom in the H2O-Na2O-SiO2 system reveals a temperature depression of up to 200 K for mixed water- and sodium-bearing glasses compared to H2O-SiO2 and Na2O-SiO2 glasses with same molar silica content. From these findings we conclude that protons may contribute significantly to the mixed alkali effect in glasses. KW - Wassergehalt KW - Silicatgläser KW - Viskosität PY - 2007 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 48 IS - 6 SP - 380 EP - 387 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-18396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Bornhöft, H. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Lumeau, J. A1 - Glebova, L.N. A1 - Glebov, L.B. T1 - Viscosity, relaxation and elastic properties of photo-thermo-refractive glass KW - Ultrasonic relaxation KW - Silicates KW - Rheology KW - Structural relaxation KW - Viscosity PY - 2009 DO - https://doi.org/10.1016/j.noncrysol.2008.10.002 SN - 0022-3093 VL - 355 SP - 126 EP - 131 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-18671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -