TY - JOUR A1 - Füllbrandt, Marieke A1 - Ermilova, E. A1 - Asadujjaman, Asad A1 - Hölzel, R. A1 - Bier, F.F. A1 - Von Klitzing, R. A1 - Schönhals, Andreas T1 - Dynamics of linear poly(N-isopropylacrylamide) in water around the phase transition investigated by dielectric relaxation spectroscopy JF - The journal of physical chemistry / B N2 - The molecular dynamics of linear poly(N-isopropylacrylamide) (pNIPAM) in aqueous media at temperatures below and above the lower critical solution temperature (LCST) are investigated using broadband dielectric relaxation spectroscopy in a frequency range from 10–1 to 1011 Hz. Below the LCST, two relaxation processes are observed in the megahertz and gigahertz region assigned to the reorientation of dipoles of the solvated polymer segments (p-process) and water molecules (w-process), respectively. Both relaxation processes are analyzed using the Havriliak–Negami (HN) function, taking special attention to the w-process. Above the LCST, the dielectric spectra of the pNIPAM solutions resemble that of pure water, showing only the high frequency relaxation process of the water molecules with a more or less Debye-type behavior. The non-Debye behavior of the w-process below the LCST is mainly induced by the interactions between water and pNIPAM chains via hydrogen bonding. The relaxation time and strength of the w-process is studied with dependence on the concentration, temperature, and the polymer chain length (molecular weight). The information obtained is useful for a deeper understanding of the dehydration behavior at the phase transition. The suggestion of dehydration of the pNIPAM chains at the LCST is confirmed by calculating a dehydration number. PY - 2014 DO - https://doi.org/10.1021/jp501325x SN - 1520-6106 SN - 1520-5207 SN - 1089-5647 VL - 118 IS - 13 SP - 3750 EP - 3759 PB - Soc. CY - Washington, DC AN - OPUS4-30578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllbrandt, Marieke A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density JF - Soft matter N2 - Temperature sensitive poly(N-isopropylacrylamide) (pNIPAM) microgels are prepared and investigated using dielectric spectroscopy in a frequency range from 10-1 Hz to 106 Hz at temperatures from 15 °C to 50 °C. The microgels were synthesized with different crosslinker molar ratios resulting in microgels with structural differences. From the dielectric response of the pNIPAM microgels the swelling/deswelling behaviour is monitored by both the temperature (T) and the frequency (f) dependence of the conductivity spectra σ*(f, T). The volume phase transition (VPT) at the lower critical solution temperature (LCST) is deduced by a change in the T-dependence of the DC conductivity σ'DC. It can be explained by a decrease in the effective charge mobility and a reduction in the effective charge number contributing to σ'DC at T > LCST. Addressing the f-dependence of the real part of the conductivity σ', a pronounced frequency dependence at temperatures above the LCST can be observed whereas at temperatures below the LCST the conductivity spectra resemble that of the pure solvent (water) which is frequency independent. The f-dependence of σ' at T > LCST is assigned to the collapse of the microgel particles. At the interfaces of the collapsed particles charge carriers are blocked and/or entrapped giving rise to Maxwell–Wagner–Sillars (MWS) polarization effects. The dependence of the MWS effect on the crosslinker amount is studied in detail and conclusions concerning the internal structure of the microgels with respect to their crosslinking density are drawn. Moreover the dielectric data are related to dynamic light scattering data. A correlation between the MWS polarization effect and the swelling/deswelling ratio expressed by the hydrodynamic radius Rh at different temperatures is established for the first time. PY - 2013 DO - https://doi.org/10.1039/c3sm27762c SN - 1744-683X VL - 9 IS - 17 SP - 4464 EP - 4471 PB - RSC Publ. CY - Cambridge AN - OPUS4-28012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllbrandt, Marieke A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Probing the phase transition of aqueous solutions of linear low molecular weight poly(N-isopropylacrylamide) by dielectric spectroscopy JF - Soft matter N2 - Aqueous solutions of linear poly(N-isopropylacrylamide) (pNIPAM) with different polymer concentrations are investigated using dielectric spectroscopy in a frequency range of 10-1 Hz to 106 Hz at temperatures from 15 °C to 50 °C. The phase transition of pNIPAM is monitored by both the temperature (T) and the frequency (ƒ) dependence of the conductivity spectra σ*(ƒ, T). First, the T-dependence of the DC conductivity σ'DC is investigated and the phase transition ('coil-to-globule' transition) at the lower critical solution temperature (LCST) of pNIPAM is deduced by a change in the T-dependence of σ'DC. The observed hysteresis between heating and cooling runs is discussed in detail in dependence on both the polymer concentration and the rate. Second, for the first time a pronounced ƒ-dependence of the real part of conductivity σ' is observed at temperatures above the LCST whereas at temperatures below the LCST the conductivity spectra are more or less similar to that of water (frequency independent). This ƒ-dependence of σ' is assigned to the formation of a kind of soft particle ('globular structure') at the LCST which is more or less impermeable to water and ions therefore giving rise to Maxwell–Wagner–Sillars (MWS) polarization effects (blocking of charges at the soft particle). The dependence on the concentration is studied in detail. PY - 2012 DO - https://doi.org/10.1039/c2sm26826d SN - 1744-683X VL - 8 IS - 48 SP - 12116 EP - 12123 PB - RSC Publ. CY - Cambridge AN - OPUS4-27320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllbrandt, M. A1 - Wellert, S. A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Thermal and corrosion (in)stability of polyamide 6 studied by broadbend dielectric spectroscopy JF - Polymer N2 - The thermal and corrosion (in)stability of polyamide 6 (PA6) is investigated by dielectric spectroscopy. The dielectric spectra can be decomposed into two local relaxation modes, two segmental modes and a high temperature conductivity/Maxwell-Wagner-Sillars process assigned to the blocking of charge carriers at interfaces between amorphous and crystalline phases of PA6. After thermal testing, the PA6 sample shows no changes in the dielectric spectra. However, after the corrosion test two main changes are observed: (1) A higher activation energy for the local β-relaxation process and (2) an increased intensity of the MWS/conductivity process which is shifted to lower temperatures. It is argued that the changes in the dielectric spectra are caused by remaining salt ions in the sample. A comparative study with non-polar polyethylene reveals that the incorporation of the salt ions during the corrosion test can be traced back to the polarity of PA6. KW - Polyamide KW - Dielectric spectroscopy KW - Corrosion (in)stability KW - Thermal (in)stability PY - 2015 DO - https://doi.org/10.1016/j.polymer.2015.08.016 SN - 0032-3861 SN - 1873-2291 VL - 75 SP - 34 EP - 43 PB - Springer CY - Berlin AN - OPUS4-34159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Friedrich, Jörg Florian A1 - Wohlrab, Sebastian A1 - Lutzki, J. A1 - von Klitzing, R. A1 - Österle, Werner A1 - Orts-Gil, Guillermo T1 - Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona JF - Colloids and Surfaces B: Biointerfaces N2 - The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silicapoly(ethylene glycol) core–shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1–6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW = 350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle–protein corona. Oppositely, for SNPs@PEG with MW ≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and Penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution. KW - Nanoparticles KW - Silica KW - PEGylation KW - Protein corona KW - BSA KW - Biointerface PY - 2013 DO - https://doi.org/10.1016/j.colsurfb.2012.11.019 SN - 0927-7765 VL - 104 SP - 213 EP - 220 PB - Elsevier AN - OPUS4-38547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Österle, Werner A1 - Friedrich, Jörg Florian A1 - von Klitzing, R. A1 - Orts-Gil, Guillermo T1 - Tuning interfacial properties and colloidal behavior of hybrid nanoparticles by controlling the polymer precursor JF - Macromolecular Chemistry and Physics N2 - A facile and versatile synthetic route for controlling the size and surface potential of organic–inorganic hybrid silica nanoparticles (NPs) is introduced in this paper. For polymer-grafted NPs, the density of polymer chains on the surface is strongly affected by the concentration of precursor. Nevertheless, for condensed NPs, the precursor concentration determines the particle size but not the density of polymer chains on the surface or the adsorption of bovine serum albumin (BSA). Results presented here may have Major implications in biomedical and colloidal chemistry since interfacial and colloidal properties are known to drive several processes associated with nanoparticles in biological media. KW - BSA KW - Bio-interface KW - Nanosilica hybrids KW - PEG KW - Protein corona PY - 2012 DO - https://doi.org/10.1002/macp.201200148 SN - 0025-116X SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2412 EP - 2419 PB - Whiley-VCH CY - Weinheim AN - OPUS4-38549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Heídari, M. A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Unveiling the dynamics of self-assembled layers of thin films of poly(vinyl methyl ether) (PVME) by nanosized relaxation spectroscopy JF - ACS Applied Materials and Interfaces N2 - A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of Poly(vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For the BDS measurements, a recently designed nano-structured electrode system is employed. A thin film is spin-coated on an ultra-flat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with non-conducting nanostructured SiO2 nano-spacers with heights of 35 nm or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincidences in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films. KW - Broadband dielectric spectroscopy KW - AC-nanochip calorimetry KW - Nanostructured capacitors KW - Thin films PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsami.6b14404 DO - https://doi.org/10.1021/acsami.6b14404 SN - 1944-8244 VL - 9 IS - 8 SP - 7535 EP - 7546 PB - ACS Publications CY - Washington DC AN - OPUS4-39291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Heidari, M. A1 - von Klitzing, R. A1 - Napolitano, S. A1 - Sferrazza, M. A1 - Schönhals, Andreas T1 - Decoupling of dynamic and thermal glass transition in thin films of a PVME/PS blend JF - ACS Macro Letters N2 - The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy), and the deduced Vogel temperature (T0). While and T0 showed a monotonous increase, with decreasing the film thickness, the dynamic glass transition temperature () measured at a finite frequency showed a non-monotonous dependence that peaks at 30 nm. This was discussed by assuming different cooperativity length scales at these temperatures, which have different sensitivities to composition and thickness. This non-monotonous thickness dependence of disappears for frequencies characteristic for T0. Further analysis of the fragility parameter, showed a change in the glassy dynamics from strong to fragile, with decreasing film thickness. KW - Thin polymeric films KW - Ellipsometry KW - Specific heat spectroscopy PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00625 SN - 2161-1653 VL - 6 IS - 10 SP - 1156 EP - 1161 PB - ACS Publications AN - OPUS4-42266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kyrey, T. A1 - Ganeva, M. A1 - Gawlitza, Kornelia A1 - Witte, J. A1 - von Klitzing, R. A1 - Soltwedel, O. A1 - Di, Z. A1 - Wellert, S. A1 - Holderer, O. T1 - Grazing incidence SANS and reflectometry combined with simulation of adsorbed microgel particles JF - Physica B: Condensed Matter N2 - Adsorbed ethylene glycol based microgel particles on a Silicon surface were studied. Neutron reflectometry (NR) and grazing incidence small-angle neutron scattering (GISANS) were performed to investigate their internal structure. Scattering experiments on soft matter systems such as adsorbed microgels often give only partial Information about the inner structure of the polymer system. In this contribution, we discuss how the detailed inner structure of adsorbed microgel particles can be reconstructed by a combination of the specular Neutron Reflectivity (NR), Grazing Incidence Small Angle Neutron Scattering (GISANS), Atomic Force Microscopy (AFM) and a simulation in the framework of the Distorted Wave Born Approximation. KW - Grazing incidence small-angle neutron scattering KW - Neutron reflectometry KW - BornAgain simulation KW - Adsorbed microgel particles PY - 2018 DO - https://doi.org/10.1016/j.physb.2018.03.049 SN - 0921-4526 VL - 551 SP - 172 EP - 178 PB - Elsevier B.V. AN - OPUS4-47011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeng, Y. A1 - Grandner, S. A1 - Oliveira, C.L.P. A1 - Thünemann, Andreas A1 - Paris, O. A1 - Pedersen, J.S. A1 - Klapp, S.H.L. A1 - von Klitzing, R. T1 - Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement JF - Soft matter N2 - Using atomic force microscopy (AFM) and small angle X-ray scattering (SAXS), we show a full comparison between structuring of nanoparticles in confinement and in bulk in order to explain the effect of confinement on characteristic lengths and the scaling law of the characteristic lengths. Three different-sized particle suspensions are used to check the generalization and the correlation between the characteristic lengths and the system parameters, like particle diameter and Debye length. The two characteristic lengths obtained from AFM force curves, the oscillatory wavelength λ, which is related to the average particle distance, and the decay length ξ, which measures how far particle correlates to obtain periodic oscillations, are in good agreement with the mean particle distance 2π/qmax and the correlation length 2/Δq in bulk, respectively, obtained from the structure peaks of SAXS diagrams. Although confinement causes layering of nanoparticles parallel to the confining surfaces, the characteristic lengths in the direction perpendicular to the confining surfaces follow the bulk behavior. The wavelength scales as ρ-1/3 with the particle number density ρ irrespective of the particle size and the ionic strength and shows a pure volume effect. Upon comparing with literature results, the λ = ρ-1/3 scaling law can be applied more generally for charged particles, as long as the repulsive interaction is sufficiently long-ranged, than the previous expression of λ = 2(R + κ-1), which only approaches the value of average particle distance under specific conditions. The decay length ξ is controlled both by the particle size and the ionic strength of the suspensions, and ξ = R + κ-1 is proposed in the paper. In addition, the interaction strength, the force amplitude and maximum scattering intensity, increases linearly with particle concentration. On the other hand, the Monte Carlo (MC) simulations and approximate hypernetted chain (HNC) closure calculation based on Derjaguin-Landau-Verwey-Overbeek (DLVO) potential are employed to study the characteristic lengths from the theoretical point of view. The experimental wavelengths are in good agreement with the theoretical counterparts and the experimental decay lengths show the same qualitative behavior as theoretical ones on the particle size and ionic strength. KW - Nanoparticle PY - 2011 DO - https://doi.org/10.1039/c1sm05971h SN - 1744-683X VL - 7 IS - 22 SP - 10899 EP - 10909 PB - RSC Publ. CY - Cambridge AN - OPUS4-24660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ji, Y. A1 - Becker, S. A1 - Lu, Z. A1 - Mezhov, Alexander A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. T1 - Effect of resting time on rheological properties of glass bead suspensions - Depletion and bridging force among particles JF - Journal of the American Ceramic Society N2 - The effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non-absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non-absorbed PCE size changes correlate well with the increased yield stress. KW - Depletion force KW - Ionic stregth KW - PCE KW - Rheology KW - Resting time PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587193 DO - https://doi.org/10.1111/jace.19469 SN - 0002-7820 SN - 1551-2916 VL - 107 IS - 1 SP - 624 EP - 639 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions JF - Materials N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Rheological properties of silica beads in the presence of different polymers and electrolyte T2 - Rheology and Processing of Construction Materials N2 - Properties of interstitial liquid phase in cement paste, including the species and concentrations of polymers and ion etc., play an important role for the rheological properties of cementitious materials. In order to better understand their effect, an inert model substance, spherical silica beads (SBs) with defined surface and granulometry were used in the presence of electrolytes (CaCl2) and/or different polymers, including polycarboxylate superplasticizer (PCE) and polyethylene glycol (PEG). It was found the presence of Ca2+ greatly increases the viscosity and yield stress of silica beads paste (SBP), which is proportional to the [Ca2+]. For the effect of PCE, the addition of PCE is beneficial to the flowability of SBP, but a high dosage of PCE leads to a reversal effect. Furthermore, the yield stress firstly increases and then decreases with increasing [Ca2+] under the same dosage of PCE. The addition of PEG always increases the yield stress of SBP, regardless of the ion concentration and the presence or not of PCE. KW - Rheological properties KW - Ions KW - Superplasticizer KW - Silica beads PY - 2019 SN - 978-3-030-22565-0 SN - 978-3-030-22566-7 DO - https://doi.org/10.1007/978-3-030-22566-7_72 SN - 2211-0844 VL - 23 SP - 619 EP - 627 PB - Springer ET - 1 AN - OPUS4-49185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Becker, S. A1 - Lu, Z. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Stephan, D. A1 - von Klitzing, R. ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Particle Interactions in Silica Systems in Presence of Superplasticizer T2 - Rheology and Processing of Construction Materials N2 - The flowability of cement paste is of great importance in today’s construction industry and is influenced by additives such as superplasticizers (SP). One type of SPs are polycarboxylate ether type SPs. These additives electrostatically bind with the negatively charged carboxylic groups at the backbone to the positively charged clinker phases. To model positively charged clinker phases with adsorbed SP, silicon Wafers are pre-coated with cationic polyethylenimine (PEI) and SP is adsorbed onto the coated surface (Si/PEI/SP). Two different polycarboxylate ether type (PCE) SP are compared – one for ready-mix concrete and one for precast concrete. In this preliminary study the interaction forces between Si/PEI/SP surface and a silica microsphere (colloidal probe) are investigated under mild physico-chemical conditions (pH *6, ion concentration <10−5 M) using Colloidal Probe Atomic Force Microscopy (CP-AFM). The interaction force between the model surfaces is attractive for low concentration of SP. The force changes from attractive to repulsive by increasing amount of SP. The force upon approach reveals a biexponential behavior. The exponential decay at large and short surface separations are attributed to electrostatic and steric interactions, respectively. The steric forces of the SP for ready-mix concrete show a steeper onset than the SP for precast concrete. The quantification of these interaction forces will be compared to rheological measurements of similar systems. Furthermore, the parameters will be changed to better approach the conditions in real systems, i.e. higher pH and ionic strength. This helps to understand how the forces on the nanoscale influence the macroscopic rheology. KW - Interfacial forces KW - Silica beads KW - Superplasticizer KW - AFM PY - 2019 SN - 978-3-030-22565-0 DO - https://doi.org/10.1007/978-3-030-22566-7 SN - 2211-0844 VL - 23 SP - 571 EP - 579 PB - Springer ET - 1 AN - OPUS4-49183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Leinitz, Sarah A1 - Lu, Z. A1 - Becker, S. A1 - Stephan, D. A1 - von Klitzing, R. A1 - Schmidt, Wolfram ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Influence of different accelerators on the rheology and early hydration of cement paste T2 - Rheology and Processing of Construction Materials N2 - Special applications like pumping, spraying or printing of concrete require the precise adjustment of very specific rheological properties at different time steps during the casting process. Superplasticizers such as polycarboxylate ethers (PCE) can be used to obtain the required flowability, which, possibly in combination with additional rheology modifying admixtures, generate the required specified consistency. However, after the application, the concrete should change the rheological properties immediately in order to avoid deformations at rest. Therefore, the use of accelerators can be effective. Accelerators influence the hydration of cementitious materials, and thus the rheological properties over the course of time and the setting. In this paper, the influence of different accelerators on the rheology and early hydration of cement paste as well as the interaction of accelerator and PCE are presented. Methods like rheometry, needle penetration tests and practical Tests like spread flow were applied. The used accelerators showed accelerating behavior on the cement pastes without and in the presence of PCE. At the same time an influence on the rheology could be observed. This effect was less in the mixes with PCE, especially at the highest water/cement ratio (w/c). KW - Rheology KW - Cement paste KW - Accelerator KW - Superplasticizer KW - Setting PY - 2019 SN - 978-3-030-22565-0 DO - https://doi.org/10.1007/978-3-030-22566-7 SN - 2211-0844 VL - 23 SP - 106 EP - 115 PB - Springer ET - 1 AN - OPUS4-49139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -