TY - JOUR A1 - Kraffert, K. A1 - Kabelitz, Anke A1 - Siemensmeyer, K. A1 - Schmack, R. A1 - Bernsmeier, D. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nanocasting of superparamagnetic iron oxide films with ordered mesoporosity JF - Advanced Materials Interfaces N2 - Maghemite and magnetite show superparamagnetic behavior when synthesized in a nanostructured form. The material’s inducible magnetization enables applications ranging from contrast enhancing agents for magnetic resonance imaging to drug delivery systems, magnetic hyperthermia, and separation. Superparamagnetic iron oxides with templated porosity have been synthesized so far only in the form of hard-templated powders, where silicon retained from the template severely degrades the material’s magnetic properties. Here, for the first time, the synthesis of superparamagnetic iron oxides with soft-templated mesopore structure is reported. The synthesis of nanostructured maghemite and magnetite films succeeds using micelles of amphiphilic block-copolymers as templates. A thermal treatment of the initially formed mesoporous ferrihydrite in nitrogen produces maghemite, which can be partly reduced to magnetite via thermal treatment in hydrogen while retaining the templated mesopore structure. The resulting materials feature a unique combination of high surface area, controlled pore diameter, and tunable magnetic properties. KW - Iron oxide films KW - Mesoporosity KW - Soft-templated PY - 2018 DO - https://doi.org/10.1002/admi.201700960 SN - 2196-7350 VL - 5 IS - 3 SP - 1700960, 1 EP - 1700960, 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraffert, K. A1 - Karg, M. A1 - Schmack, R. A1 - Clavel, G. A1 - Boissiere, C. A1 - Wirth,, Thomas A1 - Pinna, N. A1 - Kraehnert, R. T1 - Stabilization of Mesoporous Iron Oxide Films against Sintering and Phase Transformations via Atomic Layer Deposition of Alumina and Silica JF - Advanced materials interfaces N2 - The stabilization of crystal phases and nanostructured morphologies is an essential topic in application-driven design of mesoporous materials. Many applications, e.g. catalysis, require high temperature and humidity. Typical metal oxides transform under such conditions from a metastable, low crystal-line material into a thermodynamically more favorable form, i.e. from ferrihy-drite into hematite in the case of iron oxide. The harsh conditions induce also a growth of the crystallites constituting pore walls, which results in sintering and finally collapse of the porous network. Herein, a new method to stabi-lize mesoporous templated metal oxides against sintering and pore collapse is reported. The method employs atomic layer deposition (ALD) to coat the internal mesopore surface with thin layers of either alumina or silica. The authors demonstrate that silica exerts a very strong influence: It shifts hematite formation from 400 to 600 °C and sintering of hematite from 600 to 900 °C. Differences between the stabilization via alumina and silica are rationalized by a different interaction strength between the ALD material and the ferrihydrite film. The presented approach allows to stabilize mesoporous thin films that require a high crystallization temperature, with submonolayer quantity of an ALD material, and to apply mesoporous materials for high temperature applications. KW - Mesoporous oxides KW - Atomic layer deposition KW - Stabilization PY - 2018 DO - https://doi.org/10.1002/admi.201800360 VL - 5 IS - 14 SP - 1800360-1 EP - 1800360-9 PB - Wiley-VCH AN - OPUS4-47869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -