TY - JOUR A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites JF - Polymer N2 - A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study. KW - Fire retardant KW - Composites KW - Organophosphorus-containing epoxy resin PY - 2006 DO - https://doi.org/10.1016/j.polymer.2006.10.022 SN - 0032-3861 SN - 1873-2291 VL - 47 IS - 26 SP - 8495 EP - 8508 PB - Springer CY - Berlin AN - OPUS4-14054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Balabanovich, Aliaksandr A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives JF - Journal of applied polymer science N2 - The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber-reinforced composites, both flame-retarded with either 10-ethyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide or 1,3,5-tris[2-(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-10-)ethyl]1, 3,5-triazine-2,4,6(1H,3H,5H)-trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m-2). Adding the flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. KW - Flame retardance KW - Thermosets KW - Composites KW - Thermogravimetric analysis (TGA) KW - Pyrolysis KW - High performance polymers KW - Epoxy resin PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 104 IS - 4 SP - 2260 EP - 2269 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-14573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites JF - Materials N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472518 DO - https://doi.org/10.3390/ma12030344 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllenbach, L.C. A1 - Perez, J. P. H. A1 - Freeman, H.M. A1 - Thomas, A.N. A1 - Mayanna, S. A1 - Parker, J. E. A1 - Göttlicher, J. A1 - Steininger, R. A1 - Radnik, Jörg A1 - Benning, L.G. A1 - Oelkers, E.H. T1 - Nanoanalytical Identification of Siderite Dissolution-Coupled Pb Removal Mechanisms from Oxic and Anoxic Aqueous Solutions JF - ACS Eearth and Space Chemistry N2 - Lead(II) is a toxic pollutant often found in metalcontaminated soils and wastewaters. In acidic aqueous environments, Pb(II) is highly mobile. Chemical treatment strategies of such systems therefore often include neutralization agents and metal sorbents. Since metal solubility and the retention potential of sorbents depend on the redox state of the aqueous system, we tested the efficiency of the naturally occurring redox-sensitive ferrous iron carbonate mineral siderite to remove Pb(II) from acidic aqueous solutions in batch experiments under oxic and anoxic conditions over a total of 1008 h. Siderite dissolution led to an increase in reactive solution pH from 3 to 5.3 and 6.9, while 90 and 100% of the initial aqueous Pb(II) (0.48 × 10−3 mol kg−1) were removed from the oxic and anoxic systems, respectively. Scanning and transmission electron microscopy, combined with X-ray absorption and photoelectron spectroscopy, indicated that under oxic conditions, Pb(II) was consumed by cerussite precipitation and inner-sphere surface complexation to secondary goethite. Under anoxic conditions, Pb(II) was removed by the rapid precipitation of cerussite. This efficient siderite dissolution-coupled sequestration of Pb(II) into more stable solid phases demonstrates this potential method for contaminated water Treatment regardless of the redox environment. KW - Siderite KW - X-ray absorption spectroscopy KW - X-ray photoelectron spectroscopy KW - Wastewater treatment PY - 2020 DO - https://doi.org/10.1021/acsearthspacechem.0c00180 VL - 4 IS - 11 SP - 1966 EP - 1977 PB - ACS Publication AN - OPUS4-51961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabe, Sebastian A1 - Sanchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard ED - Laoutid, F. T1 - Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites T2 - Advanced Flame Retardant Materials N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these Kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradation KW - Calorimetry KW - Composites KW - Flame retardance PY - 2020 SN - 978-3-03928-350-7 SN - 978-3-03928-351-4 SP - 45 EP - 66 PB - MDPI AN - OPUS4-50738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Z. A1 - Perez, J. P. H. A1 - Smales, Glen Jacob A1 - Blukis, R. A1 - Pauw, Brian Richard A1 - Stammeier, J. A. A1 - Radnik, Jörg A1 - Smith, A. J. A1 - Benning, L. G. T1 - Impact of organic phosphates on the structure and composition of short-range ordered iron nanophases JF - Nanoscale advances N2 - Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY. Here, we document how β-glycerophosphate (GP), a model OP ligand, affects the structure and properties of GP–FHY nanoparticles synthesized by coprecipitation at variable nominal molar P/Fe ratios (0.01 to 0.5). All GP–FHY precipitates were characterized by a maximum solid P/Fe ratio of 0.22, irrespective of the nominal P/Fe ratio. With increasing nominal P/Fe ratio, the specific surface area of the GP–FHY precipitates decreased sharply from 290 to 3 m2 g−1, accompanied by the collapse of their pore structure. The Fe–P local bonding environment gradually transitioned from a bidentate binuclear geometry at low P/Fe ratios to monodentate mononuclear geometry at high P/Fe ratios. This transition was accompanied by a decrease in coordination number of edge-sharing Fe polyhedra, and the loss of the corner-sharing Fe polyhedra. We show that Fe(III) polymerization is impeded by GP, and that the GP–FHY structure is highly dependent on the P/Fe ratio. We discuss the role that natural OP-bearing Fe(III) nanophases have in biogeochemical reactions between Fe–P and C species in aquatic systems. KW - Organic phosphates KW - Iron nanophases KW - Scattering KW - Diffraction KW - Nanomaterials KW - Coprecipitation KW - Carbon storage PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599399 DO - https://doi.org/10.1039/d3na01045g SN - 2516-0230 SP - 1 EP - 13 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-59939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel von Mycoplasma JF - Angewandte Chemie N2 - Mit DNA verschlossene und mit Farbstoff beladene mesoporöse Siliciumdioxid-Nanopartikel wurden zum Nachweis von Mycoplasma bis zu einer Nachweisgrenze von ca. 70 genomischen DNA-Kopien pro µL in real kontaminierten Zellkulturmedien ohne die Hilfe von PCR-Techniken eingesetzt. KW - DNA KW - Gesteuerte Materialien KW - Mesoporöse Träger KW - Mycoplasma KW - Sonden PY - 2013 DO - https://doi.org/10.1002/ange.201302954 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 125 IS - 34 SP - 9106 EP - 9110 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28970 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials: Mycoplasma detection JF - Angewandte Chemie / International Edition N2 - Come and gate it: DNA-capped mesoporous silica nanoparticles loaded with a dye are used to detect the common contaminate Mycoplasma in real contaminated cell-culture media without needing polymerase chain reaction (PCR) techniques, at a detection limit in the range of 70 DNA genome copies µL-1. KW - DNA KW - Gated materials KW - Mesoporous materials KW - Mycoplasma KW - Sensors PY - 2013 DO - https://doi.org/10.1002/anie.201302954 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 52 IS - 34 SP - 8938 EP - 8942 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D.L. A1 - May, W.E. A1 - Parris, R.M. A1 - Schantz, M.M. A1 - Wise, S. A. A1 - Piechotta, Christian A1 - Philipp, Rosemarie A1 - Win, Tin A1 - Avila, M. A1 - Pérez Urquiza, M. A1 - Ulberth, F. A1 - Kim, B. A1 - Ishikawa, K. A1 - Chen, D. A1 - Krylov, A.I. A1 - Kustidov, Y.A. A1 - Lopushanskaya, E.M. T1 - Final report on CCQM-K38: Determination of PAHs in solution JF - Metrologia PY - 2009 DO - https://doi.org/10.1088/0026-1394/46/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 46 IS - 08003 SP - 1 EP - 13 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-20029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Schartel, Bernhard ED - Schartel, Bernhard T1 - Flame retardant epoxy resin system for liquid composite moulding applications T2 - Advances in the flame retardancy of polymeric materials KW - Epoxy resin KW - Fire retardancy PY - 2007 SN - 978-3-8334-8873-3 SP - 69 EP - 84 PB - Books on Demand GmbH CY - Norderstedt AN - OPUS4-17627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -