TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardancy for a monocomponent polyfunctional epoxy using an oligomeric organophosphorus compound N2 - Oligomeric organo-phosphorus flame retardants are proposed for a monocomponent polyfunctional epoxy resin system (RTM6) without significantly deteriorating the overall performance of the resulting material. KW - DOPO KW - Epoxy resin KW - Fire retardancy KW - LOI PY - 2006 DO - https://doi.org/10.1007/s10853-006-1079-3 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 24 SP - 8347 EP - 8351 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-14112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Knoll, Uta A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Novel Phosphorus-containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties N2 - A comparative evaluation of systematically tailored chemical structures of various phosphorus-containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot-wet properties of a cured bifunctional bisphenol-A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber-reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus-modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate-based hardener. The overall mechanical performance of the materials cured with the phosphorus-containing hardeners is comparable to that of a 4,4-DDS-cured reference system. While the various phosphorus-containing hardeners in general provide the epoxy-based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber-reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus-containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. KW - Flame retardance KW - Organo-phosphorus compounds KW - Fracture toughness PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 105 IS - 5 SP - 2744 EP - 2759 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-15071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artner, J. A1 - Ciesielski, M. A1 - Ahlmann, M. A1 - Walter, O. A1 - Döring, M. A1 - Perez, R.M. A1 - Altstädt, V. A1 - Sandler, J.K.W. A1 - Schartel, Bernhard T1 - A novel and effective synthetic approach to 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) Derivatives N2 - Starting from trivalent 10-alkoxy-10H-9-oxa-10-phosphaphenanthrenes, a broad range of DOPO derivatives was synthesized via transesterification with aliphatic alcohols and subsequent Michaelis-Arbuzov rearrangement using catalytic amounts of p-toluenesulfonic acid methylester. Due to the considerable differences in the nature of the alcohols employed, several procedures for processing them are presented. KW - DOPO KW - Flame retardant KW - Michaelis-Arbuzov rearrangement KW - Transesterification PY - 2007 DO - https://doi.org/10.1080/10426500701407417 SN - 1042-6507 SN - 0308-664X VL - 182 IS - 9 SP - 2131 EP - 2148 PB - Taylor & Francis CY - Philadelphia, USA AN - OPUS4-15705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. T1 - Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener N2 - Highly soluble 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener (2), bearing its amino groups directly on the DOPO framework, is investigated with respect to its use as a reactive flame retardant in thermosets. A mechanism for decomposition of the corresponding phosphorus-modified epoxy resin system based on a diglycidylether of bisphenol A DGEBA and 2 (DGEBA/2) is proposed and compared to the systems using DGEBA and 4,4'-diaminodiphenylsulfon (DGEBA/DDS) and to a similar system based on the structurally comparable non-reactive DOPO-based compound (DGEBA/DDS/1). Additive 1 changed the decomposition characteristics of the epoxy resin only slightly and phosphorus was released. Incorporating 2 induces two-step decomposition and most of the phosphorus remains in the residue. Furthermore, the fire behaviour of neat epoxy resin systems and a representative carbon fibre-reinforced composite based on DGEBA, DDS and 2 (DGEBA/DDS/2) were examined and compared to that of the analogous composite systems based on DGEBA/DDS and DGEBA/DDS/1. Based on different flame retardancy mechanisms both the reactive compound 2 and the additive compound 1 improve flammability (increase in LOI >13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched. KW - Decomposition KW - DOPO KW - Flame retardancy KW - Composites KW - Thermosets PY - 2008 DO - https://doi.org/10.1016/j.eurpolymj.2008.01.017 SN - 0014-3057 SN - 1873-1945 VL - 44 IS - 3 SP - 704 EP - 715 PB - Elsevier CY - Oxford AN - OPUS4-16708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials: Mycoplasma detection N2 - Come and gate it: DNA-capped mesoporous silica nanoparticles loaded with a dye are used to detect the common contaminate Mycoplasma in real contaminated cell-culture media without needing polymerase chain reaction (PCR) techniques, at a detection limit in the range of 70 DNA genome copies µL-1. KW - DNA KW - Gated materials KW - Mesoporous materials KW - Mycoplasma KW - Sensors PY - 2013 DO - https://doi.org/10.1002/anie.201302954 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 52 IS - 34 SP - 8938 EP - 8942 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel von Mycoplasma N2 - Mit DNA verschlossene und mit Farbstoff beladene mesoporöse Siliciumdioxid-Nanopartikel wurden zum Nachweis von Mycoplasma bis zu einer Nachweisgrenze von ca. 70 genomischen DNA-Kopien pro µL in real kontaminierten Zellkulturmedien ohne die Hilfe von PCR-Techniken eingesetzt. KW - DNA KW - Gesteuerte Materialien KW - Mesoporöse Träger KW - Mycoplasma KW - Sonden PY - 2013 DO - https://doi.org/10.1002/ange.201302954 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 125 IS - 34 SP - 9106 EP - 9110 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28970 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -