TY - JOUR A1 - Sturgeon, R. E. A1 - Wahlen, R. A1 - Brandsch, T. A1 - Fairman, B. A1 - Wolf-Briche, C. A1 - Alonso, J. I. G. A1 - González, P. R. A1 - Encinar, J. R. A1 - Sanz-Medel, A. A1 - Inagaki, K. A1 - Takatsu, A. A1 - Lalere, B. A1 - Monperrus, M. A1 - Zuloaga, O. A1 - Krupp, E. A1 - Amouroux, D. A1 - Donard, O. F. X. A1 - Schimmel, H. A1 - Sejeroe-Olsen, B. A1 - Konieczka, P. A1 - Schultze, P. A1 - Taylor, P. A1 - Hearn, R. A1 - Mackay, L. A1 - Myors, R. A1 - Win, Tin A1 - Liebich, Almuth A1 - Philipp, Rosemarie A1 - Yang, L. A1 - Willie, S. T1 - Determination of tributyltin in marine sediment: Comité Consultatif pour la Quantité de Matière (CCQM) pilot study P-18 international intercomparison JF - Analytical and bioanalytical chemistry N2 - The capabilities of National Metrology Institutes (NMIs—those which are members of the Comité Consultatif pour la Quantité de Matière (CCQM)of the CIPM) and selected outside "expert" laboratories to quantitate (C4H9)3Sn+ (TBT) in a prepared marine sediment were assessed. This exercise was sanctioned by the 7th CCQM meeting, April 4–6, 2001, as an activity of the Inorganic Analysis Working Group and was jointly piloted by the Institute for National Measurement Standards of the National Research Council of Canada (NRC) and the Laboratory of the Government Chemist (LGC), UK. A total of 11 laboratories submitted results (7 NMIs, and 4 external labs). Two external laboratories utilized a standard calibration approach based on a natural abundance TBT standard, whereas all NMIs relied upon isotope dilution mass spectrometry for quantitation. For this purpose, a species specific 117Sn-enriched TBT standard was supplied by the LGC. No sample preparation methodology was prescribed by the piloting laboratories and, by consequence, a variety of approaches was adopted by the participants, including mechanical shaking, sonication, accelerated solvent extraction, microwave assisted extraction and heating in combination with Grignard derivatization, ethylation and direct sampling. Detection techniques included ICP–MS (with GC and HPLC sample introduction), GC–MS, GC–AED and GC–FPD. Recovery of TBT from a control standard (NRCC CRM PACS-2 marine sediment) averaged 93.5±2.4% (n=14). Results for the pilot material averaged 0.680±0.015 µmol kg–1 (n=14; 80.7±1.8 µg kg–1) with a median value of 0.676 µmol kg–1. Overall, performance was substantially better than state-of-the-art expectations and the satisfactory agreement amongst participants permitted scheduling of a follow-up Key comparison for TBT (K-28), a Pilot intercomparison for DBT (P-43), and certification of the test sediment for TBT content and its release as a new Certified Reference Material (HIPA-1) with a TBT content of 0.679±0.089 µmol kg–1 (expanded uncertainty, k=2, as Sn) (80.5±10.6 µg kg–1). Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00216-003-2016-9. KW - Tributyltin KW - Marine sediment KW - International intercomparison PY - 2003 DO - https://doi.org/10.1007/s00216-003-2016-9 SN - 1618-2642 SN - 1618-2650 VL - 376 IS - 6 SP - 780 EP - 787 PB - Springer CY - Berlin AN - OPUS4-10905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Novak, Pavel A1 - Liebich, R. A1 - Gasch, R. T1 - Numerical Simulation of a Multi-Angular Retainer Bearing with Regard to Contact Forces T2 - Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery T2 - 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; ISROMAC-9 CY - Honolulu, HI, USA DA - 2002-02-10 PY - 2002 SP - 1 EP - 8 CY - Osaka AN - OPUS4-1749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blankschän, M. A1 - Kanzler, D. A1 - Bertovic, Marija A1 - Rosenthal, Martina A1 - Liebich, R. T1 - Influence of illuminance on indication detectability during visual testing JF - Materials Testing N2 - Visually detecting irregularities on components is a complex process, influenced by physical, technical, and human factors. Current standards mainly focus on illuminance, demanding highest accuracy for it, without providing scientific justification. In this research, 63 inspectors visually inspected forgings, with and without crack-like indications. The influence of illuminance on probability of detection was investigated. Therefore, illuminance was varied in three steps (200 lx, 350 lx, 500 lx). Human factors (e.g., experience, motivation) were recorded by using questionnaires. The results show no significant difference in probability of detection between the three illuminance levels. Equal probability of detection rates could be achieved at illuminances below and at the required threshold (500 lx). A difference in illuminance was found between the measurement point and the test area of the respective participant. This leads to higher assumed illuminance than present on the component. Compared with the measurement accuracy of the used illuminance meter, none of these deviations could be used to explain the similar results at different illuminance. The fact that illuminance has a significant influence in detecting indications has been disproven for this case. Whether human factors can provide explanation for the results remains unclear. This will be investigated in further research. KW - Illuminance KW - Non-destructive testing KW - Probability of detection KW - Reliability KW - Visual inspection PY - 2022 DO - https://doi.org/10.1515/mt-2022-0112 VL - 64 IS - 10 SP - 1532 EP - 1543 PB - De Gruyter AN - OPUS4-56019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Protz, Christian A1 - Zencker, Uwe A1 - Liebich, R. T1 - Explicit finite element analyses of drop tests with thin-walles steel sheet containers for the Konrad repository T2 - ASME 2015 Pressure vessels & piping conference - PVP2015 (Proceedings) N2 - Alternatively to experimental drop tests, the mechanical safety analyses of containers for final disposal of radioactive waste with negligible heat generation in the German Konrad repository may be carried out by numerical simulations within the safety assessment procedure. In the past, safety assessments for thin-walled steel sheet containers have been done exclusively by prototype tests and unfavorable drop scenarios were determined by engineering judgment. So far, reliable numerical simulations do not exist. Therefore, a research project was started to develop numerical simulation approaches for drop test analyses and to determine existing safety margins. Comparisons of experimental and numerical results confirm that the Finite Element (FE) model represents the general mechanical behavior of the steel sheet container sufficiently. Simulations have been used to determine an unfavorable drop scenario resulting in large deformation and damage. This paper presents the investigations carried out as well as the further development of the FE model in terms of damage mechanics. T2 - ASME 2015 Pressure vessels & piping conference - PVP2015 CY - Boston, Massachusetts, USA DA - 19.07.2015 KW - Explicit dynamic FEM KW - Impact KW - Drop test KW - Steel sheet container KW - Ductile damage KW - Damage mechanics PY - 2015 SN - 978-0-7918-5702-1 SP - PVP2015-45522, 1-10 AN - OPUS4-33805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Protz, Christian A1 - Zencker, Uwe A1 - Liebich, R. ED - Onate, E. ED - Oliver, J. ED - Huerta, A. T1 - Drop tests and dynamic finite element analyses of steel sheet containers for final disposal of radioactive waste T2 - WCCM XI - 11th World congress on computational mechanics T2 - WCCM XI - 11th World congress on computational mechanics CY - Barcelona, Spain DA - 2014-07-20 KW - Explicit dynamic FEM KW - Impact KW - Drop test KW - Steel sheet container PY - 2014 SP - 1 EP - 12(?) AN - OPUS4-31137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -