TY - JOUR A1 - Cruz, D. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers N2 - Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 mg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h. KW - Bivalves KW - Oxidative stress KW - Pharmaceuticals KW - Long-term exposure KW - Environmentally relevant concentrations PY - 2016 U6 - https://doi.org/10.1016/j.chemosphere.2016.06.068 VL - 2016 IS - 160 SP - 95 EP - 103 PB - Elsevier Ltd. AN - OPUS4-38508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams N2 - Cetirizine (CTZ) is an antihistaminic drug present in the aquatic environment, with limited information on its toxicity to organisms inhabiting this system. This study intended to evaluate the effects of CTZ on oxidative stress and energy metabolism biomarkers in the edible clam Ruditapes philippinarum after a 28 days exposure to environmentally relevant CTZ concentrations (0.0, 0.3, 3.0, 6.0 and 12.0 mu g/L). The results obtained showed that CTZ was accumulated by clams reaching maximum concentrations (up to similar to 22 ng/g FW) at the highest CTZ exposure concentrations (6.0 and 12.0 mu g/L). The bioconcentration factor (average maximum values of similar to 5) decreased at 12.0 mu g/L reflecting a reduction in clams uptake or increase of excretion capacity at this condition. The present study revealed that, in general, clams decreased the metabolic potential after exposure to CTZ (decrease in electron transport system activity), a response that led to the maintenance of glycogen content in organisms exposed to CTZ in comparison to control values. Our findings also showed that, CTZ did not exert significant levels of oxidative injury to clams. However, comparing the control with the highest exposure concentrations (6.0 and 12.0 mu g/L) a significant increase of the antioxidant enzyme superoxide activity (similar to 53 and similar to 44%) was observed in clams exposed to CTZ. Moreover, a tendency to increase lipid peroxidation (similar to 14 and similar to 9%) and carbonyl groups on proteins (similar to 11 and similar to 3%) was observed in clams exposed to CTZ (6.0 and 12.0 mu g/L) compared to control condition. Overall the present study suggests that toxic impacts may be induced in R. philippinarum if exposed for longer periods or higher CTZ concentrations. KW - Antihistamines KW - Clams KW - Biomarkers PY - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2017.05.149 SN - 0048-9697 VL - 601 SP - 793 EP - 801 PB - Elsevier B.V. AN - OPUS4-43311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Freitas, R. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Campos, B. A1 - Barata, C. T1 - Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum N2 - Several works evaluated the toxicity of pharmaceutical drugs and climate related changes in invertebrates but few explored the combined effects of both stressors, namely considering their mode of action (MoA). Carbamazepine (CBZ) and cetirizine (CTZ) are pharmaceutical drugs detected in the environment and the toxicity derived from the combined effects of these drugs with ocean acidification (OA) is poorly explored. Thus, the present study investigated the biochemical parameters related to an oxidative stress response and the transcription of genes related to the MoA of CBZ (1.0 mg/L) and CTZ (0.6 mg/L) in the clam Ruditapes philippinarum chronically exposed (28 days) to control (7.8) and low (7.5) pH conditions. The results obtained showed that despite the clams accumulated both drugs, at low pH the clams exposed to CTZ decreased drug concentration and BCF values (CTZ uptake: 2.0 ± 0.5 ng/g fresh weight; BCF: 3.8 ± 0.9) in comparison with clams exposed to control pH (CTZ uptake: 2.9 ± 0.3 ng/g fresh weight; BCF: 5.5 ± 0.6). No oxidative stress was induced by the exposure to CBZ or CTZ at each pH level, but the transcription of several genes related with the MoA (neurotransmission, immunity and biomineralization) was altered by low pH, drug exposure and the combination of both stressors. At both pH conditions, CBZ increased the transcription of GABA receptor gene (neurotransmission) and CTZ led to a decrease of Perlucin gene (biomineralization) transcription. The transcription of MyD88 gene (immunity) decreased at low pH (7.5) combined with drug exposure (CBZ or CTZ). Thus, it was highlighted that the interaction of drug exposure and low pH conditions can change bivalves’ sensitivity to drugs or alter drugs toxicity. KW - Carbamazepine KW - Biomarker KW - ELISA KW - Biochemische Parameter PY - 2018 U6 - https://doi.org/10.1016/j.envpol.2017.12.121 SN - 0269-7491 VL - 235 SP - 857 EP - 868 PB - Elsevier Ltd. CY - Amsterdam, NL AN - OPUS4-44739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine N2 - Several environmental stressors have been identified as key and/or emerging drivers of habitat change that could significantly influence marine near-shore ecosystems. These include increasing discharges of pharmaceutical contaminants into the aquatic coastal systems. Pharmaceutical drugs are often detected in aquatic environments but still information on their toxicity impacts on inhabiting species is scarce, especially when acting in combination. Furthermore, almost no information is available on the impacts of pharmaceuticals in polychaetes, often the most abundant taxon in benthic communities and commonly used as indicator species of environmental conditions. Therefore, the present study aimed to evaluate the biochemical alterations induced in the polychaete Hediste diversicolor, from a low contaminated area at the Ria de Aveiro lagoon (Portugal), by the antiepileptic drug carbamazepine (0.0 - control, 0.3, 3.0, 6.0 and 9.0 μg/L) and the stimulant caffeine (0.0 - control, 0.5, 3.0, and 18.0 μg/L), acting alone and in combination (0.3 CBZ + 0.5 CAF and 6.0 CBZ + 3.0 CAF). Glutathione Stransferases (GSTs), superoxide dismutase (SOD) and catalase (CAT) activities was determined in Hediste diversicolor from each condition. Lipid peroxidation (LPO), glutathione reduced and oxidized (GSH and GSSG), glycogen and electron transport system (ETS) were also measured. The results obtained clearly revealed that both drugs induced oxidative stress in H. diversicolor, shown by the increase on LPO levels and decrease on total glutathione and GSH/GSSG ratio with the increase of exposure concentrations. Furthermore, the present findings demonstrated that polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to fight against the excess of reactive oxygen species (ROS) leading to LPO when organisms were exposed to both drugs. Our results also demonstrated that polychaetes tended to decrease the activity of ETSwhen exposed to drugs, avoiding energy expenditurewhich may prevent them fromgreater damages. The present study further revealed that the impacts induced by the combination of both drugswere similar to those obtained at the highest drugs concentrations acting alone. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 U6 - https://doi.org/10.1016/j.cbpc.2016.06.003 VL - 2016 IS - 188 SP - 30 EP - 38 PB - Elsevier Inc. AN - OPUS4-38509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pires, A. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina N2 - In the last decade studies have reported the presence of several pharmaceutical drugs in aquatic environments worldwide and an increasing effort has been done to understand the impacts induced on wildlife. Among the most abundant drugs in the environment is caffeine, which has been reported as an effective chemical anthropogenic marker. However, as for the majority of pharmaceuticals, scarce information is available on the adverse effects of caffeine on marine benthic organisms, namely polychaetes which are the most abundant group of organisms in several aquatic ecossystems. Thus, the present study aimed to evaluate the biochemical alterations induced by environmentally relevant concentrations of caffeine on the polychaete species Diopatra neapolitana and Arenicola marina. The results obtained demonstrated that after 28 days exposure oxidative stress was induced in both species, especially noticed in A. marina, resulting from the incapacity of antioxidant and biotransformation enzymes to prevent cells from lipid peroxidation. The present study further revealed that D. neapolitana used glycogen and proteins as energy to develop defense mechanisms while in A. marina these reserves were maintained independently on the exposure concentration, reinforcing the low capacity of this species to fight against oxidative stress. KW - Invertebrates KW - Pharmaceuticals KW - Oxidative stress biomarkers KW - Energy reserves PY - 2016 U6 - https://doi.org/10.1016/j.envpol.2016.04.031 VL - 2016 IS - 214 SP - 456 EP - 463 PB - Elsevier Ltd. AN - OPUS4-38505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pieres, A. A1 - Almeida, Ângela A1 - Correia, J. A1 - Calisto, V. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana N2 - The toxicity induced in non-target organisms by pharmaceutical drugs has been the focus of several studies. In the aquatic environment, most of the studies have been devoted to fish and bivalves, while little is known on the impacts induced in polychaetes. The present study evaluated the impacts of carbamazepine and caffeine on the regenerative capacity of Diopatra neapolitana, a polychaete species with high ecological and economic relevance. Under laboratory controlled conditions polychaetes were exposed, during 28 days, to carbamazepine (Ctl-0.0; 0.3; 3.0; 6.0; 9.0 mg/L) and caffeine (Ctl-0.0; 0.5; 3.0; 18.0 mg/L). During the experiment, at days 11, 18, 25, 32, 39 and 46 after amputation, for each specimen, the percentage of the body width regenerated was determined and the number of new segments was counted. The regenerative capacity was assessed considering the number of days needed to achieve full regeneration and the total number of new segments. The obtained results revealed that with the increase of drugs concentrations organisms regenerated less new segments and took longer to completely regenerate. KW - Diopatra neapolitana KW - Pollution KW - Pharmaceutical drugs KW - Regenerative capacity PY - 2016 U6 - https://doi.org/10.1016/j.chemosphere.2015.12.035 SN - 0045-6535 VL - 146 SP - 565 EP - 573 PB - Elsevier AN - OPUS4-38497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Oliveira, P. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine N2 - The bivalve Mytilus galloprovincialis collected in the Ria de Aveiro, was selected to evaluate the acute and chronic effects of carbamazepine (CBZ) at environmentally relevant concentrations. CBZ is an antiepileptic drug widely found in the aquatic environment with toxic effects to inhabiting organisms. However, few studies evaluated the acute and chronic toxicity of this drug. The experiment was performed 'by exposing mussels to 0.0, 0.3, 3.0, 6.0 and 9.0 CBZ mu g/L, for 96 h and 28 days. To assess the toxicity of the drug, a battery of biomarkers related to mussels general physiological health status and oxidative stress was applied. CBZ was quantified in mussel tissues by an Enzyme-Linked Immunosorbent Assay (ELISA). The results obtained show that CBZ did not induce oxidative stress. However, our findings,demonstrated that the drug was taken up by mussels even though presenting low bioconcentration factor (BCF) values (up to 2.2). Furthermore, our results demonstrated that after a chronic exposure the physiological parameters, namely the condition and gonadosomatic indices, were negatively affected which may impair organisms' reproductive capacity with consequences to population sustainability. KW - Pharmaceuticals KW - Bivalves KW - Oxidative Stress PY - 2017 U6 - https://doi.org/10.1016/j.watres.2017.03.052 SN - 0043-1354 VL - 117 SP - 102 EP - 114 PB - Elsevier Ltd. AN - OPUS4-43304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario N2 - In coastal systems, organisms are exposed to amultitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity. KW - Biosensoren KW - Immunoassay KW - ELISA KW - Vor-Ort-Analytik KW - Toxikologie KW - Pharmaceutical drugs KW - Bivalves KW - Ocean acidification KW - Biomarkers KW - Climate change PY - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2022.153591 SN - 1879-1026 VL - 824 SP - 1 EP - 11 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum N2 - In Coastal Systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, Coastal Systems are prone to changes in environmental Parameters, as the alteration of salinity values because of Climate Change. Together, these Stressors (pharmaceutical drugs and salinity changes) can exert different threats than each Stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited Information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15,25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 (ig/L) and the antihistamine cetirizine (CTZ, 0.6 pg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days ofexposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic caparity and oxidative stress were evaluated. The results showed that dams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the dams, since they caused higher leveis of cellular damage. It Stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves. KW - Muscheln KW - Salinität KW - Carbamazepin KW - Cetirizin KW - ELISA KW - Immunoassay KW - Antiepileptikum PY - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2021.150369 SN - 1879-1026 VL - 806 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freitas, R. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Velez, C. A1 - Moreira, A. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Figueira, E. A1 - Soares, A. M. V. M. T1 - The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana N2 - Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. KW - Ocean acidification KW - Pharmaceuticals KW - Biomarkers KW - Oxidative stress KW - Clams KW - Long-term exposures PY - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.09.138 VL - 541 SP - 977 EP - 985 PB - Elsevier B.V. AN - OPUS4-38502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -