TY - JOUR A1 - Costabel, S. A1 - Hiller, Thomas A1 - Dlugosch, R. A1 - Kruschwitz, Sabine A1 - Müller Petke, M. T1 - Evaluation of single-sided nuclear magnetic resonance technology for usage in geosciences JF - Measurement Science and Technology N2 - Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T1) and transverse (T2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T1 relaxation data, unbiased SiS NMR results for T2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05s. This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content >0.2s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the µm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks. KW - Single-sided NMR KW - Geosciences KW - Nuclear magnetic resonance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561676 DO - https://doi.org/10.1088/1361-6501/ac9800 SN - 0957-0233 VL - 34 IS - 1 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Dlugosch, R. A1 - Prinz, Carsten T1 - Toward a better understanding of low-frequency electrical relaxation - An enhanced pore space characterization JF - Geophysics N2 - Relaxation phenomena observed in the electrical low-frequency range (approximately 1 mHz-10 kHz) of natural porous media like sandstones is often assumed to be directly related to the dominant (modal) pore throat sizes measured, for instance, with mercury intrusion porosimetry. Attempts to establish a universally valid relationship between pore size and peak Spectral Induced Polarization (SIP) relaxation time have failed, considering sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties. In addition working with characteristic relaxation times determined in Cole-Cole or Debye decomposition fits to build the relationship have not been successful. In particular, samples with narrow pore throats are often characterized by long SIP relaxation times corresponding to long “characteristic length scales” in these media, assuming that the diffusion coefficients along the electrical double layer were constant. Based on these observations, three different types of SIP relaxation can be distinguished. We present a new way of assessing complex pore spaces of very different sandstones in a multi-methodical approach to combine the benefits of mercury intrusion porosimetry, micro-computed tomography, and nuclear magnetic resonance. In this way, we achieve much deeper insight into the pore space due to the different resolutions and sensitivities of the applied methods to both pore constrictions (throats) and wide pores (pore bodies). We experimentally quantify pore aspect ratios and volume distributions within the two pore regions. We clearly observe systematic differences between three SIP relaxation types identified previously and can attribute the SIP peak relaxation times to measured characteristic length scales within our materials. We highlight selected results for a total of nine sandstones. It seems that SIP relaxation behavior depends on the size difference of the narrow pore throats to the wide pore bodies, which increases from SIP Type 1 to Type 3. KW - µ-CT KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Pore space PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509763 DO - https://doi.org/10.1190/GEO2019-0074.1 SN - 0016-8033 VL - 85 IS - 4 SP - MR257 EP - MR270 PB - Society of Exploration Geophysicists AN - OPUS4-50976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating T2 - Proceedings of the 6th International Workshop on Concrete Spalling due to Fire Exposure N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 UR - https://firespallingworkshop2019.group.shef.ac.uk/wp-content/uploads/2019/09/Fire-Spalling-Workshop_Proceedings.pdf SN - 978-1-5272-4135-0 SP - 181 EP - 190 CY - Sheffield AN - OPUS4-49161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Weise, Frank T1 - Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR JF - Construction and Building Materials N2 - The thermohydraulic damage mechanism is one of the primary causes for explosive spalling of highperformance concrete. This paper presents the spatially- and temporally-resolved analysis of the thermally-induced moisture transport and reconfiguration processes by means of X-ray-CT and 1HNMR. Thermal testing results for a high-performance concrete, which is sensitive to explosive spalling and which was prepared with and without added polypropylene fibres, are presented in this paper. These results indicate that the addition of fibres leads to a faster and deeper migration of the drying front and, thus, to a lower likelihood of vapour-pressure induced explosive spalling. KW - Explosive spalling KW - Thermally-induced moisture transport KW - X-ray-CT KW - 1H-NMR KW - High-performance concrete PY - 2019 DO - https://doi.org/10.1016/j.conbuildmat.2019.07.065 SN - 0950-0618 VL - 224 SP - 600 EP - 609 PB - Elsevier Ltd. AN - OPUS4-48727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Meng, Birgit T1 - Analysis of moisture transport in unilateral-heated dense high-strength concrete T2 - Proceedings from the 5th International Workshop on Concrete Spalling N2 - Unilateral thermal exposure of concrete building components induces moisture transport processes that have a significant influence on the spalling behaviour of dense high-strength concrete (HSC). These transport processes are based on evaporation and condensation mechanisms of liquid and gaseous water in the pores as well as the chemically bound water within the concrete. The low permeability of HSC and the formation of a saturated zone within building components (also known as a moisture clog) leads to high water-vapour pressures, which contributes to explosive spalling. The formation of these pressures has already been verified by means of pore-pressure measurement techniques. In addition, the redistribution of the moisture within concrete specimens subject to unilateral thermal exposure has been demonstrated on fractured surfaces. Investigations by means of the nuclear magnetic resonance (NMR) relaxometry technique and neutron radiography have shown one-dimensional changes in moisture distribution during thermal exposure. However, none of these methods has been able to depict the moisture distribution in three dimensions (3D), so the link between pore size, concrete micro-structure and moisture content is missing. The research project presented in this paper aims to fill this gap by developing a new multi-level test methodology to characterise non-destructively the temporal course of spatial moisture distribution during unilateral thermal exposure. The procedure used during this programme included the collection of X-ray 3D-computed tomography (CT) measurements using a miniaturised specimen subjected to in-situ thermal exposure and the comparison of those CT results with the results of one-dimensional NMR-relaxometry before and after the heating process. In the first step, a mobile heating device was developed, built and tested. To simulate a unilaterally-heated construction component, a cylindrical specimen made of HSC (Ø = 40 mm, L = 100 mm) was cast into an impermeable glass ceramic shell. The ceramic shell ensured a one-dimensional moisture flux and limited the thermal expansion of the concrete. An additional high-temperature wool (HTW) insulating shell ensured a one-dimensional heat flux. The heating device, which operated using infrared radiation (IR), allowed the unilateral heating of the specimens up to 300 °C using variable heating regimes. In the second step, the mobile heating device was integrated into the CT-scanner, which enabled the collection of measurements before, during and after heating. By subtraction of successive 3D-CT images, X-ray attenuation differences could be resolved three-dimensionally in the specimen and interpreted as changes in the moisture content. Initial results show that this test methodology can monitor the 3D changes of moisture content inside the specimen during thermal exposure. It enables the researcher to visualise areas with moisture accumulation as well as dehydrated areas inside the specimen. Comparative one-dimensional NMR-relaxometry measurements confirm the results of the CT image analysis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Spalling KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT KW - NMR KW - NDT PY - 2017 SN - 0284-5172 SP - 227 EP - 239 AN - OPUS4-42983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Prinz, Carsten A1 - Weller, Andreas A1 - Müller-Petke, M. A1 - Dlugosch, R. T1 - Towards a better understanding of electrical relaxation T2 - Proceedings of the Annual Symposium of the Society of Core Analysts (SCA) N2 - Other than commonly assumed the relaxation times observed in the electrical low-frequency range (1 mHz – 40 kHz) of natural porous media like sandstones and tuff stones cannot be directly related to the dominant (modal) pore throat sizes, measured (e.g.) with mercury intrusion porosimetry (MIP). Working with a great variety of sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties, it was observed that particularly samples with narrow pore throats were characterized by long (low-frequency) relaxations. These, however, can (following the current theories) be rather explained by long “characteristic length scales” in these media or low diffusion coefficients along the electrical double layer. However, there is no straightforward way (or single approved method) of getting reliable numbers for properties such as the lengths of pore throats, the diameter and length of the wide pores and their respective distributions. Consequently we follow a multi-methodical approach and combine the benefits of MIP, micro-computed tomography (μ-CT) and nuclear magnetic resonance (NMR) to achieve much deeper insight due to the different resolutions and sensitivities to either pore constrictions (throats) or wide pores. This helps us to understand, whether the observed electrical relaxation phenomena actually depend on geometric length scales or rather on other properties such as chemical composition, clay content, clay type or cation exchange capacity. In this paper, we showcase selected results of a systematic study of a total of 16 sandstones and three tuffs. Findings and the particular advantage of the used method combination are discussed and shown in detail for a representative sample selection. T2 - Annual Symposium of the Society of Core Analysts (SCA) CY - Vienna, Austria DA - 28.08.2017 KW - Electrical relaxation KW - Complex resistivity KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Mercury intrusion porosimetry KW - Pore size distribution KW - Sandstone PY - 2017 VL - SCA2017-080 SP - 1 EP - 9 AN - OPUS4-42599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -