TY - JOUR A1 - Pinto, H. A1 - Pyzalla, A.R. A1 - Büscher, R. A1 - Fischer, A. A1 - Aßmus, Kristin A1 - Hübner, Wolfgang T1 - The effect of hydrogen on the deterioration of austenitic steels during wear at cryogenic temperature N2 - Hydrogen represents an important alternative to fossil fuels. Hydrogen storage is possible as a gas, at room temperature (RT) at about 20 MPa pressure, and in a liquefied form, at cryogenic temperatures of about 20 K. The latter form is particularly attractive due to the possibility of stocking a large quantity of hydrogen within a small volume. In moving parts (e.g. of transport vehicles) cryogenic temperature and the presence of hydrogen strongly enhance wear processes and subsequently component failure. The present work deals with the deformation behaviour and the microstructural deterioration of austenitic CrNi- and CrMn high nitrogen-steels during friction in liquid hydrogen at 20 K. The modified microstructure within the wear scar is studied by scanning electron microscopy and X-ray diffraction methods. Diffraction studies of wear scars reveal the importance of twinning during deformation at 20 K. This increase of twinning can be attributed to a hydrogen-induced reduction of stacking fault energy (SFE) in the austenitic steels. Interactions between twin boundaries and planar dislocation structures along with locally increased stresses led to the formation of extensive crack networks. The amount of hydrogen-induced surface cracks depends on the alloy composition and is not necessarily correlated to the wear resistance of the austenitic steels. KW - Austenitic steel KW - Stacking fault energy KW - Hydrogen KW - Wear KW - Cryotechnology PY - 2005 DO - https://doi.org/10.1016/j.wear.2005.02.057 SN - 0043-1648 VL - 259 IS - 1-6 SP - 424 EP - 431 PB - Elsevier CY - Amsterdam AN - OPUS4-7692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Janzen, R. A1 - Sperling, M. A1 - Buscher, W. A1 - Bösel, A. A1 - Ehlbeck, J. A1 - Lischka, Susanne A1 - Piechotta, Christian T1 - Spezies-Analyse von Quecksilber-, Zinn- und Bleiverbindungen - Neues GC-MIP-OES-System N2 - Quecksilber-, Blei- und Zinnverbindungen gehören aufgrund Ihrer Toxizität zu den bedrohlichsten Umweltkontaminationen. Dabei können besonders die organischen Verbindungen bereits in kleinsten Mengen überaus schwerwiegende Folgen für Lebewesen verursachen. Während die anorganischen (mineralischen) Verbindungen dieser Elemente auch durch natürliche Prozesse wie Erosion aus Gestein und durch Vulkanismus in die Umwelt eingetragen werden, entstehen die meisten Kontaminationen der Umwelt aufgrund ihres jahrzehntelangen weltweiten Einsatzes in verschiedenen Pestiziden, Antifouling Anstrichen, Treibstoffen und zahlreichen industriellen Großprozessen, sowie ihrer Emission bei der Verfeuerung fossiler Brennstoffe. KW - GC-PED KW - Methylquecksilber KW - MIP PY - 2011 SN - 0016-3538 VL - 1 SP - 22 EP - 27 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-23374 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -