TY - JOUR A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Fontana, Q.P.V. A1 - Greenhalgh, E.S. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Kalinka, Gerhard A1 - Kucernak, A.R.J. A1 - Scheers, J. A1 - Shaffer, M.S.P. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems N2 - 'Structural electrolytes' retain the desirable mechanical characteristics of structural (epoxy) resins whilst introducing sufficient ionic conductivity to operate as electrolytes in electrochemical devices. Here, a series of ionic liquid–epoxy resin composites were prepared to identify the optimum system microstructure required to achieve a high level of multifunctionality. The ionic conductivity, mechanical properties, thermal stability and morphology of the cured epoxy based structural electrolytes were studied as a function of phase composition for three fully formulated high performance structural epoxy systems. At only 30 wt% of structural resin and 70 wt% of ionic liquid based electrolyte, stiff monolithic plaques with thicknesses of 2–3 mm were obtained with a room temperature ionic conductivity of 0.8 mS cm-1 and a Young's modulus of 0.2 GPa. This promising performance can be attributed to a long characteristic length scale spinodal microstructure, suggesting routes to further optimisation in the future. KW - Epoxy KW - Ionic liquid KW - Supercapacitor PY - 2013 U6 - https://doi.org/10.1039/c3ta13163g SN - 2050-7496 SN - 2050-7488 VL - 1 IS - 48 SP - 15300 EP - 15309 PB - RSC CY - London [u.a.] AN - OPUS4-29735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -