TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526376 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of total sulfur in a metal matrix by ICP-IDMS: Example Cu matrix N2 - Previously on sulfur determination in metal revealed a lack of traceability and inconsistent results. Solving the problems a reference procedure for sulfur measurement in metal are required to build up a reliable reference value. In this study a procedure was developed for quantification of total sulfur at low concentration (in sub ppm level) in metal using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The ion exchange method and complexing agent were applied in this procedure to avoid loading large amount of metal into the instrument. Adding ammonia as a complexing agent into sample solution to reduce sulfur-metal co-elute. The procedure shows high performance and it is expressed in % recovery of sulfur (> 90%) and % metal elimination (>99 %). Additionally, relative measurement uncertainties were calculated less than 1.5 % and the results are traceable directly to SI units. This study would establish as reference procedure for sulfur measurement in metal sample which fit for these purpose as follows; for certified reference material and assigned value for inter-laboratory comparison. T2 - Anwendertreffen Plasmaspektrometrie CY - Berlin, Germany DA - 22.02.2016 KW - Isotope dilution KW - Separation KW - Traceability PY - 2016 AN - OPUS4-36075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using PE frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS: porous material, thermo plastic (melting point >100°C), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits with increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a correlation coefficient r2 of 0.9987 and sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry 2018 CY - Amelia Islands, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - Sulfur quantification PY - 2018 AN - OPUS4-43996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of Sulfur in copper metals and its alloys by ICP-IDMS N2 - Sulfur is one of the major impurity elements in copper. Previously applied methods for the quantification of sulfur in copper and other pure metals revealed a lack of traceability and showed inconsistent result. Therefore, in this study a procedure was developed for the quantification of total sulfur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). A major challenge for the quantification of sulfur in copper (alloyed/unalloyed) by ICPMS is the copper matrix itself, causing matrix effects and making an extensive cleaning (cones, extraction lens) necessary after measurements. Matschat et al investigated the analysis of high-purity metals (including copper) by high resolution ICP-MS and found that the copper matrix shows strong matrix effects on the sensitivity resulting from Cu deposition on the cones. Therefore, the major part of the copper matrix has to be separated, which was accomplished by adding ammonia which forms a complex with the copper while releasing the sulfur. This was followed by a chromatographic separation using a weak cation resin. After that the sulfur fraction was further purified by chromatographic means using an anion exchange method followed by a chelating resin. The anion exchange resin (AG1X8), however, is selective to sulfate and sulfite but less-selective to sulfide. Therefore, when quantifying total sulfur in copper, the different species of sulfur need to be oxidized to sulfate prior to the sulfur-matrix separation on the AG1X8 resin in order to avoid any measurement bias. When applying the HPA oxidation with concentrated HNO3 and H2O2 a complete conversion from sulfide and sulfite to sulfate could be achieved. The recovery of all investigated sulfur species is quantitative within measurement uncertainties. The copper samples investigated in this study contain copper in the range of 0.85-0.99 kg·kg-1 and zinc from <10 to 300 g·kg-1. Approximately 0.10-0.25 g of these samples were used to perform the sulfur-copper separation. After applying the complete three stage separation procedure the mass fractions of both elements were significantly reduced to below 400 ng·g-1 for copper and below 50 ng·g-1 for zinc, respectively. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (> 99.999%) while keeping the recovery of sulfur above 80%. The procedure blank was determined by IDMS as well and yielded values for the individual IDMS measurement sequences ranging from 3 ng to 53 ng. The average of these individual procedure blanks (n=22) was calculated and yielded a total procedure blank of 14 ng sulphur with standard deviation of 12 ng. The limit of detection (LOD, blank+3SD) calculated on this basis was 0.20 µg·g-1 while the limit of quantification (LOQ, blank+10SD) was 0.54 µg·g-1, when considering a sample weight of 0.25 g. The quantification of low sulfur contents (< 15 µg/g) by conventional IDMS is hindered by the very high Cu/S ratio, which clearly affects the separation in a negative way: The recovery of sulfur dropped to about 30 % for four replicates, while two further replicates even showed recoveries below 10%. To enable measurement without completely changing the separation procedure, an exact amount of sulfur was added prior to spiking, such that the sulfur mass fraction was shifted to the optimum working range of the separation procedure. Thus exact amounts of sulfur were added to enhance the mass fraction of sulfur from 15 µg·g-1 to 40 µg·g-1, then the IDMS analysis was performed as usual and finally the added sulfur amount was subtracted. The so obtained measurement result agreed well with the certified value within the uncertainties. The relative expanded measurement uncertainties for conventional IDMS are below 1%. When applying the modified IDMS procedure, where back-spike is added to the sample before spiking, the relative expanded measurement uncertainties are larger and up to 5%. With the presented sulfur-matrix procedure a working range from approximately 15 µg·g-1 to 1500 µg·g-1 can be achieved. The developed procedure for the quantification of low sulfur amounts in copper has been validated here via three different routes: first an inter-laboratory comparison at highest metrological level, second a step-by-step validation by checking each single step of the procedure and third the setup of a complete uncertainty budget. The procedure is sufficient to facilitate value assignment of total sulfur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated below 1 % and the measurement results are traceable to the SI, which is clearly demonstrated in this work. The procedure reported in this study is a new reference procedure for sulfur measurement in copper, well meeting the requirements of the two major purposes: the certification of reference materials and the assignment of reference values for inter-laboratory comparison. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, Florida, USA DA - 08.01.2018 KW - Sulfur KW - Copper KW - Isotope dilution mass spectrometry KW - Sulfur-matrix separation KW - Reference procedure KW - Purity determination PY - 2018 AN - OPUS4-43982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulfur in copper metals and its alloys by ICP-IDMS N2 - Sulfur is one of the major impurity elements in copper. Previously applied methods for the quantification of sulfur in copper and other pure metals revealed a lack of traceability and showed inconsistent result. Therefore, in this study a procedure was developed for the quantification of total sulfur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). A major challenge for the quantification of sulfur in copper (alloyed/unalloyed) by ICPMS is the copper matrix itself, causing matrix effects and making an extensive cleaning (cones, extraction lens) necessary after measurements. Matschat et al investigated the analysis of high-purity metals (including copper) by high resolution ICP-MS and found that the copper matrix shows strong matrix effects on the sensitivity resulting from Cu deposition on the cones. Therefore, the major part of the copper matrix has to be separated, which was accomplished by adding ammonia which forms a complex with the copper while releasing the sulfur. This was followed by a chromatographic separation using a weak cation resin. After that the sulfur fraction was further purified by chromatographic means using an anion exchange method followed by a chelating resin. The anion exchange resin (AG1X8), however, is selective to sulfate and sulfite but less-selective to sulfide. Therefore, when quantifying total sulfur in copper, the different species of sulfur need to be oxidized to sulfate prior to the sulfur-matrix separation on the AG1X8 resin in order to avoid any measurement bias. When applying the HPA oxidation with concentrated HNO3 and H2O2 a complete conversion from sulfide and sulfite to sulfate could be achieved. The recovery of all investigated sulfur species is quantitative within measurement uncertainties. The copper samples investigated in this study contain copper in the range of 0.85-0.99 kg·kg-1 and zinc from <10 to 300 g·kg-1. Approximately 0.10-0.25 g of these samples were used to perform the sulfur-copper separation. After applying the complete three stage separation procedure the mass fractions of both elements were significantly reduced to below 400 ng·g-1 for copper and below 50 ng·g-1 for zinc, respectively. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (> 99.999%) while keeping the recovery of sulfur above 80%. The procedure blank was determined by IDMS as well and yielded values for the individual IDMS measurement sequences ranging from 3 ng to 53 ng. The average of these individual procedure blanks (n=22) was calculated and yielded a total procedure blank of 14 ng sulphur with standard deviation of 12 ng. The limit of detection (LOD, blank+3SD) calculated on this basis was 0.20 µg·g-1 while the limit of quantification (LOQ, blank+10SD) was 0.54 µg·g-1, when considering a sample weight of 0.25 g. The quantification of low sulfur contents (< 15 µg/g) by conventional IDMS is hindered by the very high Cu/S ratio, which clearly affects the separation in a negative way: The recovery of sulfur dropped to about 30 % for four replicates, while two further replicates even showed recoveries below 10%. To enable measurement without completely changing the separation procedure, an exact amount of sulfur was added prior to spiking, such that the sulfur mass fraction was shifted to the optimum working range of the separation procedure. Thus exact amounts of sulfur were added to enhance the mass fraction of sulfur from 15 µg·g-1 to 40 µg·g-1, then the IDMS analysis was performed as usual and finally the added sulfur amount was subtracted. The so obtained measurement result agreed well with the certified value within the uncertainties. The relative expanded measurement uncertainties for conventional IDMS are below 1%. When applying the modified IDMS procedure, where back-spike is added to the sample before spiking, the relative expanded measurement uncertainties are larger and up to 5%. With the presented sulfur-matrix procedure a working range from approximately 15 µg·g-1 to 1500 µg·g-1 can be achieved. The developed procedure for the quantification of low sulfur amounts in copper has been validated here via three different routes: first an inter-laboratory comparison at highest metrological level, second a step-by-step validation by checking each single step of the procedure and third the setup of a complete uncertainty budget. The procedure is sufficient to facilitate value assignment of total sulfur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated below 1 % and the measurement results are traceable to the SI, which is clearly demonstrated in this work. The procedure reported in this study is a new reference procedure for sulfur measurement in copper, well meeting the requirements of the two major purposes: the certification of reference materials and the assignment of reference values for inter-laboratory comparison. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Isotope dilution mass spectrometry KW - Sulfur-copper-sepration KW - SI traceability KW - Measurement uncertainty KW - ICP-MS KW - Sulfur species conversion PY - 2018 AN - OPUS4-44640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS N2 - For the first time polyethylene (PE) frits were used to quantify sulphur in copper metal and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The properties of the PE frit meet the requirements for isotope dilution LA-ICPMS which are porous material, thermal and chemical resistance and high absorption efficiency. The breakthrough, however, as a support material, is the low sulphur blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the absorption efficiency for the sample solution, which is present in the cavities of the frit. The absorption efficiency was studied by loading sulphur standards with varying sulphur amounts (0 - 80 µg S) onto the frits. The remaining sulphur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulphur was absorbed by the frit. The so prepared frits with increasing sulphur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a coefficient of determination, r2 of 0.9987 and a sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM (BAM-M376a, BAM-228 and BAM-227) were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digested solution was absorbed on the frits. The dried frit samples were then analyzed by LA-ICP-IDMS and it could be demonstrated that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scan lines. Relative standard deviations of the isotope ratios were below 5 % in average between 3 lines (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI for the mass fraction of sulphur in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to the final mass fraction in the samples obtained by LA-ICP-IDMS is illustrated in this presentation. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubwoski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using pe frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS:: porous material, thermo plastic (melting point >100oC), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 104 cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits whith increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S whit a correlation coefficient r2 of 0.9987 and sensitivy of 3.4x104 cpsµg-1 for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulphur in copper metals by isotope dilution LA-ICP-MS using polyethylene frits N2 - Sulphur is one of the relevant impurities in copper and its alloys affecting their material properties. To ensure the quality of copper products, fast direct solid sampling techniques are very attractive. However, for the calibration suitable matrix reference materials are required. For the certification of such reference materials appropriate, SI-traceable analytical methods are essential. Therefore, a procedure was developed to quantify total sulphur in copper by combining the classical isotope dilution (ID) technique and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, for the first time, polyethylene (PE) frits were used to prepare appropriate solid samples for the sulphur quantification in copper metals (alloyed/unalloyed) by isotope dilution LA-ICP-MS. The properties of the PE frit meet the requirements as porous material with high absorption efficiency, thermal and chemical resistance as well as low sulphur blank. Different copper reference materials were used to develop and validate the procedure. The copper samples were spiked with 34S, digested with nitric acid and then the digests were absorbed on PE frits. After drying, the frits were analysed by LA-ICP-IDMS using a Nd:YAG laser at 213 nm coupled to an ICP sector field mass spectrometer. It could be demonstrated, that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scanned lines. Relative standard deviations of the isotope ratios were below 5 % in average between three line scans (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS after analyte-matrix separation. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI from the kg down to the sulphur mass fraction in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - ICP-MS KW - Laser ablation KW - Isotope dilution KW - Copper PY - 2018 AN - OPUS4-45569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Panne, Ulrich A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - SI-traceable quantification of sulphur in copper metal and its alloys by ICP-IDMS N2 - Previously applied methods for the quantification of sulphur in copper and other pure metals revealed a lack of SI-traceability and additionally showed inconsistent results, when different methods were compared. Therefore, a reference procedure is required which allows SI-traceable values accompanied by a Sound uncertainty budget. In this study a procedure was developed for the quantification of total sulphur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The major part of the copper matrix was separated by adding ammonia which forms a complex with the copper while releasing the sulphur followed by chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion exchange method and second a chelating resin. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (>99.999%) while keeping the recovery of sulphur above 80%. Procedure blanks are in the order of 3–53 ng resulting in LOD and LOQ values of 0.2 mg g1 and 0.54 mg g1, respectively. The procedure is sufficient to facilitate value assignment of the total sulphur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated to be below 1% and the measurement results were traceable to the SI. The procedure reported in this study is a new reference procedure for sulphur measurement in copper, being fit for two major purposes, certification of reference materials and assignment of reference values for inter-laboratory comparison. KW - Traceability KW - Measuremment uncertainty KW - Isotope dilution mass spectrometry KW - Reference measurements PY - 2018 U6 - https://doi.org/10.1039/c7ja00338b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 90 EP - 101 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-43614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuroiwa, T. A1 - Zhu, Y. A1 - Inagaki, K. A1 - Long, S. A1 - Christopher, S. A1 - Puelles, M. A1 - Porinsky, M. A1 - Hatamleh, N. A1 - Murby, J. A1 - Merrick, J. A1 - White, I. A1 - Saxby, D. A1 - Caciano de Sena, R. A1 - Dominguez de Almeida, M. A1 - Vogl, Jochen A1 - Phukphatthanachai, Pranee A1 - Fung, W.-H. A1 - Yau, H.-P. A1 - Okumu, T. O. A1 - Kang'iri, J. N. A1 - Tellez, J. A. S. A1 - Campos, E. Z. A1 - Galvan, E. C. A1 - Kaewkhomdee, N. A1 - Taebunpakul, S. A1 - Thiengmanee, U. A1 - Yafa, C. A1 - Tokman, N. A1 - Tunc, M. A1 - Can, S. Z. T1 - Report of the CCQM-K123: trace elements in biodiesel fuel N2 - The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). The National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. The participants used different measurement methods, though most of them used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. The material was quite challenging and a number of questions were raised at the IAWG meeting. Concerning S, the variation in S results between participants, particularly those using IDMS methods was discussed at the IAWG meeting. BAM, NIST and NMIJ reviewed their experimental conditions, results and/or uncertainty calculations for IDMS. According to the additional evaluation and investigation, the variances between the revised results became smaller than the original one, the revised results were overlapping between IDMS measurements of S content at the k=2 level. It is not possible to calculate a KCRV with values being modified after submission. It was concluded that this KC does not support S measurements. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participating NMIs or DIs. It is expected that sodium, calcium, potassium, magnesium and phosphorus at mass fractions greater than approximately 0.1 mg/kg, 0.1 mg/kg, 0.05 mg/kg, 0.05 mg/kg and 0.1 mg/kg respectively in biodiesel fuel and similar matrices (fuels and oils etc.) can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. Furthermore, the results of this key comparison can be utilized along with the IAWG core capability approach. KW - Biodiesel KW - Fuel KW - Sulphur KW - Reference measurement PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-393941 UR - http://iopscience.iop.org/article/10.1088/0026-1394/54/1A/08008/meta SN - 0026-1394 SN - 1681-7575 VL - 54 SP - Tech. Suppl. 2017, 08008, 1 EP - 47 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of total sulfur in a metal matrix by ICP-IDMS: Example Cu matrix N2 - Previously on sulfur determination in metal revealed a lack of traceability and inconsistent results. Solving the problems a reference procedure for sulfur measurement in metal are required to build up a reliable reference value. In this study a procedure was developed for quantification of total sulfur at low concentration (in sub ppm level) in metal using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The ion exchange method and complexing agent were applied in this procedure to avoid loading large amount of metal into the instrument. Adding ammonia as a complexing agent into sample solution to reduce sulfur-metal co-elute. The procedure shows high performance and it is expressed in % recovery of sulfur (> 90%) and % metal elimination (>99 %). Additionally, relative measurement uncertainties were calculated less than 1.5 % and the results are traceable directly to SI units. This study would establish as reference procedure for sulfur measurement in metal sample which fit for these purpose as follows; for certified reference material and assigned value for inter-laboratory comparison. T2 - Anwendertreffen Plasmaspektrometrie 2016 CY - Berlin, Germany DA - 22.02.2016 KW - IDMS KW - Sulfur-matrix separatio KW - Purity assessment PY - 2016 AN - OPUS4-40027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 U6 - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - How to quantify the exact amount and establish metrological traceability of sulphur in biodiesel by ICP-IDMS and in copper samples by ICP-IDMS, GDMS, LA-ICP-MS, and LA-ICP-IDMS N2 - The quantification of the exact amount of sulphur is a big challenge due to a lack of SI-traceability and inconsistent results, when different methods are compared. Therefore, a reference procedure is required which allows SI-traceable values. In this work three procedures were developed for the quantification of the total sulphur amount in biodiesel by using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS), pure copper metals and copper alloys by ICP-IDMS and external calibration for GDMS and LA-ICP-MS at low concentration levels. The most critical parts of the sulphur quantification were sulphur purification and pre-concentration. Sulphur-matrix separation procedures were developed to serve both sample types. For biodiesel samples the sulphur was purified and matrix separated by an anion exchange chromatographic procedure. The analytical procedure was fully validated by the use of a certified reference material, a step-by-step validation and an inter-laboratory comparison at CCQM key comparison level. In the case of copper samples, the copper matrix was separated from sulphur by adding ammonia which forms a complex with the copper while releasing the sulphur prior to a chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion ion exchange method and second a chelating resin. The method was validated by appropriate certified reference materials. The developed procedures enable sulphur measurements at the low g·g-1 level with sufficiently low measurement uncertainties (< 2 %, Urel). The external calibration was performed to produce reliable measurement results for the routine analytical techniques GDMS and LA-ICP-MS. Matrix-matched reference materials whith exactly known amount of sulphur obtained by ICP-IDMS beforehand, were used as calibrators to quantify sulphur in copper samples. The metrological traceability to the SI for the mass fraction of sulphur is established for all presented procedures by an unbroken chain of comparisons, each accompanied by an uncertainty budget. T2 - CCQM Workshop on Advances in Metrology in Chemistry and Biology CY - Sèvres, France DA - 09.04.2019 KW - Copper KW - Sulfur KW - IDMS KW - SI traceability PY - 2019 AN - OPUS4-47931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -