TY - CONF A1 - Fürst, Richard A1 - Mózer, V. A1 - Pokorný, M. A1 - Vlach, T. T1 - Nosné konstrukce z textilního betonu za zvýšené teploty T1 - Loadbearing structures made from textile reinforced concrete at elevated temperatures N2 - The work aims to assess the textile reinforced concrete at elevated temperatures and applications of additional fire protection as well. T2 - Fire Protection Conference CY - Ostrava, Czechia DA - 01.09.2021 KW - High Performance Concrete KW - Textile reinforcement KW - Fire test PY - 2021 SN - 978-80-7385-247-4 SP - 10 EP - 12 PB - Sdružení požárního a bezpečnostního inženýrství CY - Ostrava AN - OPUS4-53509 LA - ces AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Vojtek, T. A1 - Duarte, Larissa A1 - Zerbst, Uwe A1 - Pokorný, P. A1 - Jambor, M. A1 - Hutař, P. T1 - Determination of fatigue crack propagation thresholds for steel in presence of environmental effects N2 - The experimental determination of the resistance to fatigue crack propagation in steel, particularly in the socalled near-threshold regime, is a crucial issue for safety-relevant components which are designed to operate for a large number of loading cycles before undergoing periodic inspections. This work summarizes the most relevant results of extensive experimental campaigns conducted at BAM and IPM over the last years, which have been devoted to the determination of fatigue crack propagation characteristics on medium and high strength steels. The influence of environment, oxide-induced crack closure and test methodologies in the near-threshold regime are discussed. KW - Steel KW - Fatigue crack propagation threshold KW - Oxide-induced crack closure KW - Environmental effect PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106449 SN - 0142-1123 VL - 153 SP - 1 PB - Elsevier Ltd. AN - OPUS4-53525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fürst, Richard A1 - Fürst, E. A1 - Vlach, T. A1 - Repka, J. A1 - Pokorny, M. A1 - Mozer, V. T1 - Use of Cement Suspension as an Alternative Matrix Material for Textile-Reinforced Concrete N2 - Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance. KW - Textile-reinforced concrete KW - High-performance concrete KW - Carbon fibers KW - Cement matrix PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527100 DO - https://doi.org/10.3390/ma14092127 SN - 1996-1944 VL - 14 IS - 9 SP - 2127 PB - MDPI CY - Basel AN - OPUS4-52710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fürst, Richard A1 - Vlach, T. A1 - Pokorny, M. A1 - Mozer, V. T1 - Study of Behavior of Textile-Reinforced Concrete with Epoxy Resin Matrix in Fire N2 - Textile-reinforced concrete is currently most frequently used for non-load–bearing structures, but there is a vision for also using it in load–bearing construction elements. In recent years, this construction material has been subjected to detailed examination. Different combinations of materials for potential use in textile-reinforced concrete have been described. These differ in the type of concrete mix and the composition of the textile reinforcement. The aim of this work is to test the application of a specific textile-reinforced concrete, consisting of high-performance concrete, textile reinforcement from carbon fibers and its epoxy resin matrix, at an elevated temperature. The combination of these materials makes it possible to produce subtle load–bearing structures with excellent mechanical properties. The critical issue is the behavior of these structures when exposed to fire. A series of medium-scale fire condition experiments were carried out with a temperature load based on the ISO 834 curve, followed up by mechanical tests. The aim of these experiments was to describe critical areas of textile-reinforced concrete in fire and to propose possible solutions. In an indicative fire experiment, experimental samples displayed massive spall of concrete layers, and interaction between materials was lost due to the low temperature resistance of the epoxy resin. Concurrently, the optimal quantity of polypropylene fibers was experimentally determined. This paper presents an experimental demonstration of the problematic aspects of textile-reinforced concrete and subsequent recommendations for future work with practical application in the design of load–bearing structures. KW - Textile-reinforced concrete KW - High-performance concrete KW - Carbon fibers KW - Epoxy resin KW - Load–bearing structures KW - Fire resistance PY - 2021 DO - https://doi.org/10.1007/s10694-021-01116-y SN - 1572-8099 SN - 0015-2684 SP - 1 EP - 22 PB - Springer AN - OPUS4-52712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -