TY - JOUR A1 - Radl, S. A1 - Kreimer, M. A1 - Manhart, J. A1 - Griesser, T. A1 - Moser, A. A1 - Pinter, G. A1 - Kalinka, Gerhard A1 - Kern, W. A1 - Schlögl, S. T1 - Photocleavable epoxy based materials N2 - The present study aims at the development of photodegradable epoxy based materials comprising o-nitrobenzyl ester links that undergo well defined bond cleavage in response to UV irradiation. New bi-functional epoxy based monomers bearing o-nitrobenzyl ester groups are synthesized and thermally cured with an anhydride hardener to yield photosensitive polymers and duromers. The UV induced changes in solubility are exploited for the preparation of positive-type photoresists. Thin patterned films are obtained by photolithographic processes and characterized by microscopic techniques. The results evidence that sensitive resist materials with good resolution and high contrast behavior can be accomplished. Along with resist technology, the applicability of o-nitrobenzyl chemistry in the design of recyclable polymer materials with thicknesses in the millimeter range is evaluated. By monitoring the thermo-mechanical properties upon UV illumination, a distinctive depletion of storage modulus and glass transition temperature is observed with increasing exposure dose. Additionally, single fiber pull-out tests are carried out revealing a significant decrease of the interfacial adhesion at the fiber-matrix interface due to the phototriggered cleavage reaction. KW - Epoxy based network KW - Photocleavage KW - o-Nitrobenzyl ester KW - Adhesion KW - Mechanical properties KW - Interfacial shear strength PY - 2015 DO - https://doi.org/10.1016/j.polymer.2015.05.055 SN - 0032-3861 SN - 1873-2291 VL - 69 SP - 159 EP - 168 PB - Elsevier Ltd. AN - OPUS4-34566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clute, C. A1 - Balasooriya, Winoj A1 - Cano Murillo, Natalia A1 - Theiler, Géraldine A1 - Kaiser, A. A1 - Fasching, M. A1 - Schwarz, Th. A1 - Hausberger, A. A1 - Pinter, G. A1 - Schloegl, S. T1 - Morphological investigations on silica and carbon-black filled acrylonitrile butadiene rubber for sealings used in high-pressure H2 applications N2 - Effects of NBR formulations on properties for high-pressure gas systems were tested. Functionalized silica enhances typical properties to a comparable range like CB. The balance of additives results in suitable RGD performance. Silica filled NBR shows lower H2 uptake compared to non-plasticized CB filled NBR. Morphology of CB filled NBR is less affected by H2 than silica filled grades. KW - High-pressure hydrogen gas KW - Sealing KW - Acrylonitrile butadiene rubber KW - Filler-rubber-interaction KW - Rapid gas decompression (RGD) PY - 2024 DO - https://doi.org/10.1016/j.ijhydene.2024.04.133 SN - 0360-3199 VL - 67 SP - 540 EP - 552 PB - Elsevier Ltd. AN - OPUS4-60559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -